Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Advertisements

WRITING TEACHER ELENI ROSSIDOU ©Υπουργείο Παιδείας και Πολιτισμού.
Translation Tips LG New Testament Greek Fall 2012.
Ενότητα B1: Η έλικα και η γεωμετρία της Α. Θεοδουλίδης
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Υπολογισμός ορθών και τεμνουσών δυνάμεων, και καμπτικών ροπών ΔΙΑΓΡΑΜΜΑΤΑ M, N, Q 1.
Inductance of a Semiconductor Wire Example 4.4. We consider an A11 – first layer of aluminum – wire in 0.25 μ m CMOS technology, on top of the field oxide.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Γραφικά Υπολογιστών και Συστήματα Αλληλεπίδρασης Απεικόνιση τρισδιάστατης σκηνής Διδάσκων: Αν. Καθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Διδακτικής των Φυσικών Εννοιών Development of spatial thinking, geometry and physics. What can.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
ONLINE ΠΑΙΧΝΙΔΙΑ Παρουσιάζουν οι μαθητές: Γ Ι Ο Υ Λ Η Λ Ι Ο Υ Ν Η Ι Α Σ Ω Ν Α Σ Τ Α Σ Σ Η Σ.
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
ERASMUS+ - ΒΔ 1 Σχολική Εκ π αίδευση – Εκ π αίδευση Ενηλίκων Ημερίδα Παροχής Πληροφοριών για τη Διαχείριση και Υλοποίηση των Εγκεκριμένων Σχεδίων (Πρόσκληση.
1 Κολοβακτηρίαση μηρυκαστικών και χοίρου. 2 Ορισμός Γενικευμένη ή εντερική λοίμωξη που προσβάλλει τα νεαρά κυρίως ζώα [νεογέννητα (0-14 ημερών) μηρυκαστικά,
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Μαθαίνω με “υπότιτλους”
Διασύνδεση LAN Γιατί όχι μόνο ένα μεγάλο LAN
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Matrix Analytic Techniques
Στο μάθημα συζητήσαμε για το spatial frequency tuning των κυττάρων της V1, που σημαίνει ότι τέτοια κύτταρα έχουν μέγιστη απόκριση για τον προτεινόμενο.
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Αν. Καθηγητής Γεώργιος Ευθύμογλου
JSIS E 111: Elementary Modern Greek
Άλλη επιλογή: Κύλινδρος:
International Hospitality Management MC Employability Scheme
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
Δικτυώματα (Δικτυωτοί Φορείς)
Υπολογισμός ορθών δυνάμεων, τεμνουσών δυνάμεων, και καμπτικών ροπών
INDUCTION WEEK 2015 Academic Integrity
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
The area formula is related the size of the RADIUS of the circle
5.5 – Multiple-Angle and Product-to-Sum Identities
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
CIRCLES Arc Length, Sectors, Sections.
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
Καθηγητής Γεώργιος Ευθύμογλου
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Law of Sine Chapter 8.2.
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Μανίκη Γαβριέλλα Μήτσης Σταύρος
Constructing a Triangle
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 Find the length from Point B to Point E, in feet. [pause] In this problem, ---- R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 were looking for the length from point B, on the curve, to a point E, just inside the curve. The problem provides the distance between ---- R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 Point A and Point D, the distance between Point D and Point E, R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 And, the radius of the curve, R. R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 To solve this problem, we’ll first draw a line from Point O to Point B. R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E 119 125 131 137 We’ll create a point F where this line crosses the line segment D E. R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] F R = 1,000 [ft] C D 119 125 131 137 To solve for the length of line segment B E, we’ll solve for Triangle F E B, --- R O

? Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] F R = 1,000 [ft] C D 119 125 131 137 Where the length of line segment B E equals the length of line segment --- R O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] F R = 1,000 [ft] C D E LFE LBE = tan (AFBE) F E, divided by the tangent of angle F B E. Next we’ll create point G, --- R O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) which is a projection of Point B onto line segment A O. Since lines G O and B E --- R O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = parallel tan (AFBE) are parallel, then Angle G O B and Angle F B E are --- R O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C E F D equal LFE LBE = parallel tan (AFBE) equal. Angle G O B equals the arc sin of the --- AFBE = AGOB R O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) quotient, the length of line segment G B divided by the length of line segment B O. Line segment B O is the same length --- AFBE = AGOB R LGB AGOB=sin-1 LBO O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) as the radius, or 1,000 feet. The length of line segment G B ---- AFBE = AGOB R LGB AGOB=sin-1 LBO O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) is equal to the length of line segment D E, ---- AFBE = AGOB R LGB AGOB=sin-1 LBO LDE=LGB O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) which is 160 feet. Using these values, --- AFBE = AGOB R LGB AGOB=sin-1 LBO LDE=LGB O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) Angle GOB and Angle FBE equal --- AFBE = AGOB R LGB AGOB=sin-1 LBO 160 [ft] LDE=LGB O

Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F LFE LBE = tan (AFBE) o 9.21 9.21 degrees. [pause] The length of line segment F E is equal to ---- AFBE = AGOB R o 9.21 LGB AGOB=sin-1 LBO 160 [ft] LDE=LGB O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o the length of line segment D E minus the length of line segment --- AFBE=9.21 R LFE=LDE-LDF O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o D F. The problem states the length of line segment D E equals --- AFBE=9.21 R LFE=LDE-LDF O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 160 feet. The length of line segment D F is equal to the length of line segment --- AFBE=9.21 R LFE=LDE-LDF O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o D O times the tangent of Angle G O B. From before, we solved Angle G O B to be --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 9.21 degrees. The length of line segment D O is equal to the length of line segment --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o A O minus the length of line segment A D. The length of line segment A O is equal to --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=LAO-LAD O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o the radius of the curve, which is, ------ AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=LAO-LAD O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 1,000 and the length of line segment A D is given as --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=LAO-LAD O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 150 feet, which makes the length of line segment D O equal to --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=LAO-LAD O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 850 feet. The length of line segment D F equals --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=LAO-LAD = 850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 850 feet times the tangent of 9.21 degrees, which is --- AFBE=9.21 R LFE=LDE-LDF LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 137.8 feet. The length of line segment F E equals ---- AFBE=9.21 R LFE=LDE-LDF 137.8 [ft] LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) o 160 feet minus 137.8 feet, or --- AFBE=9.21 R LFE=LDE-LDF 137.8 [ft] LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C E F D LFE LBE = tan (AFBE) 22.2 [ft] o 22.2 feet. And finally, the length of line segment B E equals, --- AFBE=9.21 R LFE=LDE-LDF 137.8 [ft] LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C F D E LFE LBE = tan (AFBE) 22.2 [ft] o 22.2 feet, divided by the tangent of 9.21 degrees, which equals, --- AFBE=9.21 R LFE=LDE-LDF 137.8 [ft] LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C F D E LBE =136.9 [ft] LFE LBE = tan (AFBE) 22.2 [ft] o 136.9 feet. [pause] AFBE=9.21 R LFE=LDE-LDF 137.8 [ft] LDF = LDO * tan (AGOB) LDO=850 [ft] O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C F D E LBE =136.9 [ft] LFE LBE = tan (AFBE) 22.2 [ft] 119 125 131 137 When reviewing the possible solutions, --- o 9.21 R O

Find: LBE [ft] AGOB=9.21 A LAD =150 [ft] B LDE =160 [ft] G R = 1,000 [ft] C F D E LBE =136.9 [ft] LFE LBE = tan (AFBE) 22.2 [ft] 119 125 131 137 The answer is D. o 9.21 R AnswerD O

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4