Deriving the equations of

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Click here to start Important !: You have to enable macros for this game (Tools ->Macros -> Security -> «medium»).
Advertisements

Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Προσομοίωση Δικτύων 2n Άσκηση Δημιουργία, διαμόρφωση μελέτη επικοινωνιακών ζεύξεων.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Ο PID έλεγχος. Integral Lag Distance velocity lag Υλοποιούμε την.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
ΑΣΦΑΛΕΙΑ ΑΣΘΕΝΩΝ (PATIENT SAFETY) ωφελέειν ή μη βλάπτειν ωφελέειν = θεραπευτική παρέμβαση μη βλάπτειν = ασφάλεια ασθενών.
Introduction to Latent Variable Models. A comparison of models X1X1 X2X2 X3X3 Y1Y1 δ1δ1 δ2δ2 δ3δ3 Model AModel B ξ1ξ1 X1X1 X2X2 X3X3 δ1δ1 δ2δ2 δ3δ3.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
OFDM system characteristics. Effect of wireless channel Intersymbol interference in single carrier systems due to multipath propagation with channel delay.
Μαθαίνω με “υπότιτλους”
Μάθημα 6ο Κινητοποίηση Προσωπικού
Αντικειμενοστραφής Προγραμματισμός ΙΙ
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
JSIS E 111: Elementary Modern Greek
Υποστηρίζω την άποψη μου επιχειρηματολογώντας
Αν. Καθηγητής Γεώργιος Ευθύμογλου
JSIS E 111: Elementary Modern Greek
Υδρόβια Φυτά Θεοφανώ Κούλεντρου Rippling Water (Basic)
Example Rotary Motion Problems
2013 edition Wilfred E. Major
Η κοιτίδα των ΙΕ Η συνέχεια.
JSIS E 111: Elementary Modern Greek
Expression Home All In One Inkjet Printers
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
” قالوا سبحانك لا علم لنا إلا ما علمتنا أنك أنت العليم الحكيم “
JSIS E 111: Elementary Modern Greek
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
All In One Inkjet Printers
All In One Inkjet Printers
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
All In One Inkjet Printers
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
This show was edited by Mike:
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
3Ω 17 V A3 V3.
3Ω 17 V A3 V3.
This show was edited by Mike:
Variable-wise and Term-wise Recentering
Μεταβλητή Κοστολόγηση: Εργαλείο Διοίκησης
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Mastering NT Greek Greek  English English  Greek
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Deriving the equations of Rotational Motion a graphical explanation of where they come from. By J. Jaffrey at Long Bay College, NZ

The 5 Variables symbol variable unit initial angular velocity s-1 ωf final angular velocity α angular acceleration s-2 θ displacement radians t time s

A washing machine starts to speed up in the spin cycle of the wash A washing machine starts to speed up in the spin cycle of the wash. It starts at 60rpm and after 5.0s ends up at 900rpm. We can plot this motion on a graph with angular velocity on the vertical axis and time on the horizontal axis. The starting 60rpm will give us the initial angular velocity ωi 60 revolutions needs to be converted to radians. 60 x 2π =377radians This then needs to be changed to s-1 Notice the unit of ω is s-1. Radians are simply a ratio of arc length to radius so have no dimension. So ωi = 6.3 s-1 (2π) Similarly the final 900rpm will give us ωf So ωf = 94 s-1 Time t = 5.0s Click for next ►

ωf = ωi + αt α = 18 s-2 (2sf) Initial velocity ωi = 6.3s-1 Final velocity ωf = 94s-1 Time t = 5.0s ω(ms-1) What is the angular acceleration? 25 50 75 100 ωf Angular acceleration is rate of change of angular velocity in s-2. It is the gradient of the line. This is given by: ∆ω/∆t. ∆ω =(ωf- ωi). So here: ∆ω = ∆ω ωav 88s-1 87.96s-1 Acceleration a=∆ω/∆t So now we have: α=88/5 α = 18 s-2 (2sf) ∆t=5 ωi 1 2 3 4 5 t (s) What is the average angular velocity? Average angular velocity: ωav = ½ (ωi + ωf) ωav = 50s-1 The change in angular velocity ∆ω is given by the angular acceleration (α) multiplied by time (t). ωf = ωi + αt So ∆ω = αt and Click for next ►

θ = ωit θ = ωit + ½ αt2 + ½ αt2 = 250 ω(ms-1) αt θ = 31.5radians ½ αt2 ωav = ½ (ωi + ωf) ωf = ωi + αt ω(ms-1) θ = ½(ωf + ωi )t 25 50 75 100 Can we calculate θ another way? The displacement for a steady ωi (6.3s-1) for t (5.0s) gives: αt θ = 31.5radians The displacement because of the increase in velocity is the average extra velocity times t or: ½ αt2 θ = ωavt ½ x αt x t (½ x 88) x 5 = 220rad or ½ αt2 ωit 1 2 3 4 5 t (s) This is the area of the triangle under the line. Can we calculate the angular displacement over 5.0s? So the total displacement is: Displacement is average velocity multiplied by time so here: θ = ½ (ωf + ωi )t θ = ωit + ½ αt2 θ = ωit + ½ αt2 = 32 + 220 = 250 θ= 50 x 5 θ = 250radians Click for next ►

θ = ωft - ½ αt2 ½ αt2 = ½ αt2 250 = 470 - 220 ω(ms-1) αt = 220 t (s) ωav = ½ (ωi + ωf) A third way to calculate θ=250radians is by looking at the displacement in the 5.0s of t at the final velocity ωf = 94s-1 ωf = ωi + αt θ = ½(ωf + ωi )t ω(ms-1) θ = ωit + ½ αt2 t 25 50 75 100 ωf ½ αt2 This is too large so we must subtract enough displacement to allow for the acceleration. αt ωft We must subtract the area of the triangle above the line. = ½ αt2 = 220 Finally the displacement is the area under the line given by: 1 2 3 4 5 t (s) At ωf for 5.0s we have: θ = 94 x 5 θ = θ = ωft - ½ αt2 470 radians 250 = 470 - 220 This is the area of the rectangle on the graph

s-2 ωf2 = ωi2 + 2αθ ωf = ωi + αt ωf2 = (ωi + αt)2 ωav = ½ (ωi + ωf) t=5.0s ωi= 6.3s-1 ωf = 94s-1 θ=250radians ωf = ωi + αt The last equation cannot be shown easily from a graph. However it can be derived using algebra. θ = ½(ωf + ωi )t θ = ωit + ½ αt2 ωf = ωi + αt square both sides θ = ωit - ½ αt2 ωf2 = (ωi + αt)2 expand ωf2 = ωi2 + 2ωiαt + α2t2 extract 2α ωf2 = ωi2 + 2α (ωit + ½αt2 ) But this term in brackets is simply θ so simplifying we get our final equation of rotational motion: A numerical check gives us: 942 = 6.32 + (2x17.6x250) 8836 = 40 + 8800 ωf2 = ωi2 + 2αθ s-2 (s-1)2 (s-1)2 s-2 All three terms give: We can check the units both sides are the same. Click for next ►

The Equations of Rotational Motion ωf = ωi + αt ωav = ½ (ωi + ωf) θ = ½(ωf + ωi )t θ = ωit + ½ αt2 θ = ωit - ½ αt2 ωf2 = ωi2 + 2αθ Click to finish