Find: Force on culvert in [lb/ft]

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
Advertisements

ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Δυνάμεις, Ροπές ως προς σημείο, Στατική Ισορροπία 1.
ΜΗΧΑΝΙΚΗ Ι - ΣΤΑΤΙΚΗ 1. Στατική Ισορροπία (επανάληψη)
Υπολογισμός ορθών και τεμνουσών δυνάμεων, και καμπτικών ροπών ΔΙΑΓΡΑΜΜΑΤΑ M, N, Q 1.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Lesson 1a: Basic words, common objects JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Ακαδ. έτος ΜΗΧΑΝΙΚΗ Ι – ΣΤΑΤΙΚΗ Εξάμηνο 3 ο ΘΕΩΡΙΑ + ΑΣΚΗΣΕΙΣ ΤΕΤΑΡΤΗ 15:00 – 19:00 ΑΙΘΟΥΣΑ Α1 Διδάσκων : Στέφανος Κατσαβούνης, Αναπληρωτής.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Class X: Athematic verbs II
JSIS E 111: Elementary Modern Greek
Άλλη επιλογή: Κύλινδρος:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΟΡΓΑΝΩΣΗ ΑΘΛΗΤΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Ακαδημαϊκό έτος 2017 – 2018, Εξάμηνο 3ο ΜΗΧΑΝΙΚΗ Ι – ΣΤΑΤΙΚΗ
Example Rotary Motion Problems
Δικτυώματα (Δικτυωτοί Φορείς)
Υπολογισμός ορθών δυνάμεων, τεμνουσών δυνάμεων, και καμπτικών ροπών
2 Θεςη και διαταξη 11/9/2018 6:52 πμ ΔΡ. ΧΡΥΣΟΥΛΑ ΠΑΠΑΪΩΑΝΝΟΥ
Η Περιβαλλοντική Αγωγή εισήλθε στα εκπαιδευτικά συστήματα πολλών κρατών από την ανάγκη ανταπόκρισης στις όλο και αυξανόμενες πιέσεις της οικολογικής κρίσης.
JSIS E 111: Elementary Modern Greek
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
ΑΠΟΣΤΑΞΗ Distillation.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
This show was edited by Mike:
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Law of Sine Chapter 8.2.
3Ω 17 V A3 V3.
3Ω 17 V A3 V3.
This show was edited by Mike:
Deriving the equations of
Variable-wise and Term-wise Recentering
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Κοστολόγηση κατά Φάση Τέταρτο Κεφάλαιο
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Warm Up.
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Find: Force on culvert in [lb/ft] lateral strain=0 2,550 2,800 C) 3,150 D) 3,400 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft Find the lateral force on the culvert in pounds per foot. In this problem 5 ft

Find: Force on culvert in [lb/ft] lateral strain=0 2,550 2,800 C) 3,150 D) 3,400 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft we have a 5 foot by 5 foot box culvert 5 ft

Find: Force on culvert in [lb/ft] lateral strain=0 2,550 2,800 C) 3,150 D) 3,400 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft With 6 feet of cover 5 ft

Find: Force on culvert in [lb/ft] lateral strain=0 2,550 2,800 C) 3,150 D) 3,400 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft We’ve also been provided certain soil conditions 5 ft

Find: Force on culvert in [lb/ft] lateral strain=0 2,550 2,800 C) 3,150 D) 3,400 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft and we’re asked to find the force. Notice the 5 ft

Find: Force on culvert in [lb/ft] lateral strain=0 γT=120 [lb/ft3] 6 ft wc=12% φ=30˚ Force 5 ft groundwater table is below the culvert 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft Force 5 ft For a uniform layer of soil, 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft Force 5 ft the lateral stress distribution on a vertical body increases linearly with depth as shown here. 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft Force 5 ft For this problem we’re only interested in the force on the side of the culvert 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh [lb/ft2] (@ 6 [ft]) 5 ft So we’ll compute the horizontal stress, 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh [lb/ft2] (@ 6 [ft]) 5 ft σh [lb/ft2] (@ 11 [ft]) at the top and bottom of the culvert, 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh [lb/ft2] (@ 6 [ft]) 5 ft σh [lb/ft2] (@ 11 [ft]) Since the stress profile is linear with depth, the total force per length will equal the average lateral stress at the top and bottom of the culvert, multiplied by the 5 feet of the culvert’s height. 5 ft Force = σh,ave [lb/ft2] * 5 [ft]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ 6 ft 5 ft So first we find our vertical stress 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft 5 ft Then we solve for the effective vertical stress 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft pore water pressure 5 ft Where ‘u’ equals the pore water pressure 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft pore water pressure 5 ft Since the groundwater table is beneath the culvert, 5 ft u = 0

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft pore water pressure 5 ft the pore water pressure is zero 5 ft u = 0

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = σv 5 ft So we substitute in… 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d 5 ft The horizontal effective stress 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d σh’ = KO * σv’ 5 ft is equal to the vertical effective stress times the appropriate lateral earth pressure coefficient 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d σh’ = KO * σv’ 5 ft For this problem we know to use “at rest” soil conditions since 5 ft At rest condition

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d σh’ = KO * σv’ 5 ft It was given the lateral strain is zero. 5 ft At rest condition lateral strain=0

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d σh’ = KO * σv’ 5 ft We substitute again, 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u 6 ft σv’ = γT * d σh’ = KO * σv’ 5 ft σh’ = KO* γT * d And continue solving 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] σv=γT * d wc=12% φ=30˚ σv’ = σv - u σv’ = γT * d σh’ = KO * σv’ σh’ = KO* γT * d Let’s move this over

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d Now the “at-rest”

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d lateral earth pressure coefficient

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d is equal to 1 minus the sine of the friction angle.

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d The horizontal stress

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u Is equal to the effective horizontal stress plus the

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u pore water pressure. Which we’ve already determined was zero

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ So we substitute again

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ And start plugging in our known data σh= (1-sin φ) * γT * d

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ The friction angle 30˚ σh= (1-sin φ) * γT * d

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ The total unit weight 30˚ σh= (1-sin φ) * γT * d 120 [lb/ft3]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ 6 [ft], 11 [ft] And the depths. The horizontal stress 30˚ σh= (1-sin φ) * γT * d 120 [lb/ft3]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] 1-sin φ wc=12% φ=30˚ σh’ = KO* γT * d σv=γT * d σv’ = γT * d σv’ = σv - u σh’ = KO * σv’ σh’ = KO* γT * d σh’= (1-sin φ) * γT * d σh = σh’ + u σh = σh’ 6 [ft], 11 [ft] at the top and bottom of the of the culvert is 360 and 660 pounds per square feet, respectively. 30˚ σh= (1-sin φ) * γT * d 120 [lb/ft3] σh= 360 [lb/ft2], 660 [lb/ft2]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh [lb/ft2] (@ 6 [ft]) 5 ft σh [lb/ft2] (@ 11 [ft]) So we return to our profile view 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) and add our known values. 5 ft

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) The average stress is 510 pounds per square foot 5 ft σh,ave = 510 [lb/ft2]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) Substitute this value in 5 ft 510 [lb/ft2] Force = σh,ave [lb/ft2] * 5 [ft]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) And we have a force 5 ft 510 [lb/ft2] Force = 510 [lb/ft2] * 5 [ft]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) Of 2,550 pounds per foot, along the culvert 5 ft 510 [lb/ft2] Force = 510 [lb/ft2] * 5 [ft] = 2,550 [lb/ft]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 2,550 2,800 C) 3,150 D) 3,400 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) From the possible solutions, 5 ft 510 [lb/ft2] Force = 510 [lb/ft2] * 5 [ft] = 2,550 [lb/ft]

Find: Force on culvert in [lb/ft] γT=120 [lb/ft3] wc=12% φ=30˚ 2,550 2,800 C) 3,150 D) 3,400 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) The answer is A…. Another question which 5 ft 510 [lb/ft2] Force = 510 [lb/ft2] * 5 [ft] = 2,550 [lb/ft] Answer: A

σh = 360 [lb/ft2] (@ 6 [ft]) σh = 660 [lb/ft2] (@ 11 [ft]) Force At what depth, d, would the equivalent point force act? 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) may be asked in this sort of problem is, 5 ft Force = 510 [lb/ft2] * 5 [ft] = 2,550 [lb/ft]

σh = 360 [lb/ft2] (@ 6 [ft]) σh = 660 [lb/ft2] (@ 11 [ft]) Force At what depth, d, would the equivalent point force act? 6 ft σh = 360 [lb/ft2] (@ 6 [ft]) Force 5 ft σh = 660 [lb/ft2] (@ 11 [ft]) At what depth, d, would the equivalent point force act 5 ft Force = 510 [lb/ft2] * 5 [ft] = 2,550 [lb/ft]

At what depth, d, would the equivalent point force act? 6 ft on the side of the culvert? 5 ft 5 ft

σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? 6 ft σh = 360 [lb/ft2] From our two horizontal stress values, we can 5 ft 5 ft σh = 660 [lb/ft2]

σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? 6 ft σh = 360 [lb/ft2] Visualize this stress as a rectangle 5 ft 5 ft σh = 660 [lb/ft2]

σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? 6 ft σh = 360 [lb/ft2] And a triangle, and solve for 5 ft 5 ft σh = 660 [lb/ft2]

σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? d=area*c+area*c 6 ft area+area σh = 360 [lb/ft2] the depth of the equivalent point force based on their magnitudes and centroids 5 ft 5 ft σh = 660 [lb/ft2]

σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? d=area*c+area*c 6 ft area+area area σh = 360 [lb/ft2] Where the magnitudes are represented by the areas 5 ft 5 ft area σh = 660 [lb/ft2]

c c σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? d=area*c+area*c 6 ft area+area c c area σh = 360 [lb/ft2] And the centroids of each area represent is the depth to be averaged. For this example, 5 ft 5 ft area σh = 660 [lb/ft2]

d=8.75 [ft] c c σh = 360 [lb/ft2] σh = 660 [lb/ft2] At what depth, d, would the equivalent point force act? d=8.75 [ft] d=area*c+area*c 6 ft area+area c c area σh = 360 [lb/ft2] The depth, d, would be 8.75 feet 5 ft 5 ft area σh = 660 [lb/ft2]

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? 20 [ft]