http://www.lyyn.com/scattering
The classical picture is that the incident radiation excites dipolar oscillations in a polarisable system such as a molecule or atom which can act as secondary sources of EM radiation Harry Kroto 2004
P = E E = Eocos2πωt P = Eocos2πωt 4
this shows a Hertz osci http://en. wikipedia. org/wiki/File:Dipole this shows a Hertz osci http://en.wikipedia.org/wiki/File:Dipole.gif -oli Harry Kroto 2004 5
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] 6
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] 7
½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] αo Eo cos 2πωet ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] 8
½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] αo Eo cos 2πωet ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] ½(∂α/∂q) qo Eo[cos 2π(ωe- ωq)t] 9
ωe ω →
ωe ωe+ ωq ω → 11
ωe ωe- ωq ωe+ ωq ω → 12
ωe Stokes Line Anti-Stokes Line ωe- ωq ωe+ ωq ← ωq → ← ωq → ω → 13
15
16
17
18
19
20
21
22
23
Harry Kroto 2004 24
P = E 25
P = E E = Eocos2πωt 26
http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap_4/index.htm
P = α E Total polarisability
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet P = αo Eo cos 2πωet + (∂α/∂q) qo Eocos 2πωqt cos 2πωet
P = α E Total polarisability α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet P = αo Eo cos 2πωet + (∂α/∂q) qo Eocos 2πωqt cos 2πωet P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t]
P = E E = Eocos2πωt P = Eocos2πωt 37
P = E E = Eocos2πωt P = Eocos2πωt 39
P = E E = Eocosωt P = Eocosωt
Attenuation due to scattering by interstellar gas and dust clouds Harry Kroto 2004
Harry Kroto 2004
Harry Kroto 2004
P = E
P = E
P = E
P = E
Bill Madden 559 2123