Ch. 5 Criteria for Equilibrium & Stability

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Principles of programming languages 9: Answers for exercises Isao Sasano Department of Information Science and Engineering.
Advertisements

Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
Διαλυτότητα οργανικών ουσιών
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ TRANSFORMERS Reference : ΤΕΙ Κρήτης - Ηλεκτρικές Μηχανές Συλλιγνάκης.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Ο PID έλεγχος. Integral Lag Distance velocity lag Υλοποιούμε την.
Δυνάμεις, Ροπές ως προς σημείο, Στατική Ισορροπία 1.
ΜΗΧΑΝΙΚΗ Ι - ΣΤΑΤΙΚΗ 1. Στατική Ισορροπία (επανάληψη)
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Ηλεκροχημεία Βασικές γνώσεις- εφαρμογές Ανόργανη Χημεία ΙII Noέμβριος 2015 Θ. Καμπανός.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
1 Κατανομή Fermi-Dirac και η στάθμη Fermi Η πυκνότητα καταστάσεων μας λέει πόσες καταστάσεις υπάρχουν σε μία δεδομένη ενέργεια Ε. Η συνάρτηση Fermi f(E)
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
OFDM system characteristics. Effect of wireless channel Intersymbol interference in single carrier systems due to multipath propagation with channel delay.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Ερωτήσεις –απαντήσεις Ομάδων Εργασίας
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Matrix Analytic Techniques
Μη Γραμμική Θεωρία Ελαστικής Ευστάθειας: Θεμελιώδες Υλικό
2η Κλινική Εντατικής Θεραπείας - «Αττικό» Νοσοκομείο
Ψηφιακeς ιδEες και αξIες
Business Process Management
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Νομική Σχολή
Αν. Καθηγητής Γεώργιος Ευθύμογλου
φίλτρα IIR (Infinite Impulse Response)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Άλλη επιλογή: Κύλινδρος:
ΒΧΔ Πολλαπλών κλιμάκων
Βάσεις Δεδομένων ΙΙ Triggers
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
Προσαρμοστικά μοντέλα
(ALPHA BANK – EUROBANK – PIRAEUS BANK)
Δικτυώματα (Δικτυωτοί Φορείς)
Συμβολική Ανθρωπολογία
How to Make Simple Solutions and Dilutions Taken from: Resource Materials for the Biology Core Courses-Bates College (there may be errors!!)
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Νομική Σχολή
Ανάλυση Γεωργικού Οικογενειακού Εισήματος (ΓΟΕ)
Πανεπιστήμιο Θεσσαλίας
Postgraduate Courses related to Clinical Criminology and Legal Psychology - Italy WE CAN – ΜΠΟΡΟΥΜΕ! Cyberbullying – Κυβερνοεκφοβισμός Δίκτυο Δράσης για.
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Choosing between Competing Experimental Designs
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Class V: Personal Pronouns and 3rd Decl. Cont. (chs )
ΑΝΟΡΓΑΝΗ & ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Deriving the equations of
Variable-wise and Term-wise Recentering
Find: ρc [in] from load (4 layers)
CPSC-608 Database Systems
Entropy & 2nd Law of Thermodynamics
2 CH3OH(l) + 3 O2(g) → CO2(g) + 2 H2O(g)
Μεταγράφημα παρουσίασης:

Ch. 5 Criteria for Equilibrium & Stability 1. Unit process: Chemical reactions 2. Unit operation: mass transfer Distillation Absorption & Adsorption Extraction & leaching Membrane separation

Multiple phase, multiple component systems 1. Solubility (i) complete miscible : single homogeneous phase (ii) partial miscible : multiple phases (iii) immiscible: multiple phases 2. Types of phase (i) Liquid –liquid (extraction) (ii) Vapor – liquid (distillation; gas absorption) (iii) Solid –liquid (leaching; crystallization) (iv) Solids in solids (zone melting; crystallization)

Limit of Intrinsic stability

Classification of equilibrium In tem of potential energy Unstable equilibrium Neutral stable Metastable equilibrium Potential energy Stable equilibrium barrier

Postulate II & The Second Law ☆ Postulate II: In processes for which there is no net effect on the environment, all the systems with a given internal constraints will change in such a way to approach one and only one stable equilibrium state ☆ The Second Law ΔSUniv. (= ΔSisolated ) = ΔSsys + ΔSHRs = ΔSU, V, N ≧ 0 (4-31) for all natural processes, or unstable state systems Since an isolated system, Q = 0, W = - P ΔV = 0, V = const, Further using the first law for close system, ΔU = Q + W, then ΔU = 0, or U = const If the stable processes, or stable state system, ΔSU, V, N < 0

Criteria for stable state system ΔSU, V,N < 0 equilibrium ΔS = 0 S ΔS<0 ΔS>0 unstable stable One of the properties of system

ΔS U,V,N < 0

ΔS = S - So =δS + (1/2!) δ2S + (1/3!) δ3S + ….. < 0 Perturbation If minor perturbations leave the system unchanged, we define the original state as a stable equilibrium state. So(Z1o,) S S S Zio - δZi Zio + δZi Zio Zi ΔS = S - So =δS + (1/2!) δ2S + (1/3!) δ3S + ….. < 0

ΔS = S - So = δ S + (1/2!) δ2S + (1/3!) δ3S + ….. < 0 (6-3) where δ S = Σ (∂S/∂Zi) δZi δ2 S = ΣΣ(∂2S / ∂Zi ∂Zj)δZiδZj δ3 S =ΣΣΣ (∂3S / ∂Zi ∂Zj ∂Zk )δZiδZjδZk (i) δU = 0 (ii) δV = 0 (iii) δNi = 0, i = 1, 2, ….., i, …., n

(1) The criterion of equilibrium δ S = Σ δ S (k) = O (6-6) (2) The criterion of stability δ2S =Σ δ2S (k) ≦ 0, if = 0 δ3S =Σ δ3S (k) ≦ 0 ≦ 0, if = 0, (6-7) δjS < 0 (3) The constrains (Isolated system) (i) δU =ΣδU (k) = 0 (ii) δV =ΣδV (k) = 0 (iii) δNi =ΣδNi (k) = 0, i = 1, 2, ….., i, …., n

Equilibrium Criteria Derived from the combination of the first and second laws ΔS U,V,N = ΔS system + ΔS heat resv. > 0 (1) for irrversible spontanoeus processes ΔS heat resv = Q heat resv /To ( To = Theat resv ) and Q heat resv = - Q system = Q ΔS - Q/ To. < 0 (2) Applying the1st law for the system, ΔU = Q + W Q = ΔU - W (3) Combine (2) and (3), ΔS – (ΔU - W )/ To < 0 ) ΔU - To.ΔS < W = - WwR Only consider P-V work, WwR = [ (- PoΔVo )], and ΔVo = -ΔVsys

Equilibrium criterion for natural processes ΔU + Po ΔV – To ΔS <0 Equilibrium criterion for natural processes (1) ΔV =0 , i.e., V = const., ΔS =0 , S = const Δ US, V, N < 0 (2) ΔV =0 , V = constant, To.= T = constant ΔU - TΔS < 0 , ΔU - Δ (T S) < 0 Δ(U - T S) < 0 The Helmholtz free energy, A, is defined as A = U - TS Δ A < 0, Δ AT, V, N < 0 (6-28)

(3) ΔS =0 , T = constant, ΔS =0 , S = constant, ΔU + PΔV < 0, Δ[U + PV ] < 0, Δ H < 0, Δ HS, P, N < 0 (6-27) (4) Po = P = constant, To.= T = constant ΔU + Δ(PV) -Δ(TS) <0 H = U + PV Δ ( U + PV -TS) < 0 The Gibbs-free energy is defined as G = U + PV –TS ΔG < 0 ΔG T, P, N < 0

Criterion based on H, A and G ΔU Σ = Δ(Usys + UHR + UWR ) > 0 (i) ΔS Σ = Δ(Ssys + SHR)= ΔSWR = 0 (ii) ΔV Σ = Δ(V + VWR)= ΔVHR = 0 (iii) ΔN Σ = ΔNsys = ΔN HR= ΔN WR = 0 j

1. Enthalpy, lock the thermal gate, ΔUHR = 0 ΔU Σ = Δ(Usys + UWR ) > 0 (i) ΔS Σ = ΔS sys = ΔSHR = ΔSHR = 0; S = constant (ii) ΔVΣ = Δ(Vsys + VWR) = ΔVHR = 0 (iii) ΔNiΣ = ΔNisys = 0; Ni = constant, i = 1, 2,…., n Apply the first law for the work reservoir (WR) ΔU WR = - P WR ΔV WR = P ΔV (let PWR = Psys = P ) ΔU Σ = ΔU + P ΔV > 0, If P = constant ΔU Σ = ΔU +Δ(P V) > 0 ΔU Σ = Δ(U +P V) > 0 Since H = U + P V , ΔH S, P, N > 0

2. Helmholtz free energy, lock the piston, ΔUWR = 0 ΔU Σ = Δ(U + UHR ) > 0 (i) ΔS Σ = ΔS + ΔSHR = 0 (ii) ΔV Σ = ΔV = ΔVHR = ΔVWR = 0; V = constant (iii) ΔN Σ = ΔN = ΔNHR= ΔN WR = 0; N = constant Apply the first law for the heat reservoir (HR) ΔUHR = THR ΔSHR = - TΔS (If TWR = T = constant) ΔU Σ = ΔU + [ -Δ(TS)]= Δ(U - TS) > 0 A= U - TS ΔA T, V, N > 0

3. Gibbs free energy, open both the piston and the thermal gate, ΔUΣ= Δ(U + UHR + UWR ) > 0 (i) ΔSΣ = ΔS + ΔSHR = ΔSWR = 0 (ii) ΔVΣ = (ΔV + ΔVWR ) = ΔVHR = 0 (iii) ΔNΣ = ΔN = ΔNHR = ΔNWR = 0 Apply the first law for the HR and WR ΔUHR = THR ΔSHR = - T ΔS (If TWR = T = constant) ΔUWR = - PWR ΔVWR = P ΔV (If PWR = P = constant ΔUΣ= Δ(U + P ΔV - T ΔS) = Δ(U + PV - TS) > 0 G = U + PV - TS ΔG T, P, N > 0

The criterion of stability δ2S = (∂2S/∂U2)VNδU2 + 2 (∂2S/∂U∂V)N[i] δUδV + (∂2S/∂V2)UNδV2 + 2Σ[ (∂2S/∂U∂Ni),V,N[i]δU+(∂2S/∂V∂Ni),U, N[i] δVi ] δNi + ΣΣ(∂2S/∂Ni∂Nj) U,VδNiδNj < 0 δ2S =(SUUδU2 + 2 SUVδUδV + SVVδV2 + 2Σ[SU N[i]δU + SU N[i]δV]δNi + ΣΣS NiNjδNiδNj < 0 The constraints are δU = 0; δV = 0; δNi = 0, i= 1. 2,……, n

Taking Δ US, V, N < 0 as the criterion ΔUS, V, N (= U -Uo ) = δU + (1/2!) δ2U + (1/3!) δ3U + …> 0 (1)The criterion of equilibrium δUS,V,N = δU = Σ(∂U/ ∂Zi) δZi = O (2)The criterion of stability δ2U = ΣΣ(∂2U/ ∂Zj ∂Zj)δZiδZj = ≧ 0, if = 0 δ3U = ΣΣΣ (∂3U/ ∂Zi ∂Zj ∂Zk)δZiδZjδZk≧ 0, if = 0, ……………….. If = 0 δjU > 0 The constraints (i) δS = 0 (ii) δV = 0 (iii) δNi = 0, i = 1, 2, ….., i, …., n

Consider the system is perturbed to become two phase α and β, δ2S = δ2Sα + δ2S β = {(∂2S/∂U2)VNδU2 + 2 Σ(∂2S/∂U∂V )NδUδV + (∂2S/∂V2)UNδV2 + 2Σ [(∂2S/∂U∂Ni)V, [Ni]δU + (∂2S/∂V∂Ni)U, N[i]δVi ]δNi + 2 Σ (∂2S/∂Ni∂Nj)U,V,N[i,j]δNiδNj }α + the similar terms of the β phase < 0 δ2S = { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2ΣSUN[i]δUδNi + 2ΣSVN[i]δVδNi ] + ΣΣS NiNjδNiδNj }α + the similar terms of the β phase < 0 < 0 (7-1)

The equations for criterion of stability based on δ2S or δ2U δ2S = (N/Nβ ) { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2ΣSUN[i]δUδNi + 2ΣSVN[i]δVδNi ] + ΣΣS NiNjδNiδNj }α < 0 ( 7-5) The similar procedure is used for the criterion of the internal energy, δ2U = (N/Nβ ) { (USSδS2 + 2 USVδSδV + UVVδV2 + 2ΣUSN[i]δSδNi + 2ΣUVN[i]δVδNi ] + ΣΣUNiNjδNiδNj }α > 0 ( 7-6) The criterion of stability for the pure component system, for instance, δ2U = (N/Nβ) (USS δZ 12 + A22 δZ22 + G33 δZ3 2) α > 0 , then USS > 0 , AVV > 0 , G33 > 0

The mathematic treatment for obtaining the criterion of stability U = y (o) = U(S, V, N1, N2, ……, Ni, ……. Nn) y (o) = f (x1, x2, ……, xi, ……. xm) m = n + 2 δ2U = (N/Nβ ) { (USSδS2 + 2 USVδSδV + UVVδV2 + 2ΣUSN[i]δSδNi + 2ΣUVN[i]δVδNi ] + ΣΣUNiNjδNiδNj }α > 0 (7-6) δ2y (o) = K ΣΣ y (o) ijδx iδx j > 0 (7-8) = (7-6) ΣΣ y (o) ijδx iδx j = Σ ykk (k-1) δZk2 > 0 k = 1, 2,….., m (7-9) δZ k = {δxk + (y(o)23 / y(o)11) δx2 + (y(o)33 / y(o)11))δx3 } k = 1, 2, ……,m δZ m= δxm for k = m ykk (k-1) Zk2 > 0, and Zk2 > 0 ykk (k-1) > 0, k = 1, 2,….., m = n + 2 y11(o) > 0, y22(1) > > 0, y33(2) > 0, …………, ymm (m-1) (= y(n+2)(n+2) (n+1) ) > 0

The Legendre transform, y(o) = f (x1, x2, ……, xi, ……. xm) d y(o) = Σ {(∂ y (o) /∂xi)x[i] dxi = Σ ξi dxi And ξi = {(∂ y (o) /∂xi)x[i] = y i (o) y (j) = f (ξ1, ξ2, … ξj , xj+1, ……. xm) = y(o) - Σξi xi d y (j) = - Σxi dξi + Σξi dxi y i(j) = {(∂ y (j) /∂ xi)ξ, x[i] = ξi = y i (o) , i > j y i(j) = {(∂ y (j) /∂ ξi )ξ[j], x = - xi, i ≦ j y (m-1) = f (ξ1, ξ2, … ξj , …..ξm-1, xm) , m = n+2 y (n+1) = f (ξ1, ξ2, … ξj , …..ξn+1, xm) j j j+1

ymm (m-1) = y (n+2)(n+2) (n+1) = (∂2 y (n+1) /∂xn+2 2)ξ = (∂/∂xn+2 )(∂ y (n+1)/ ∂xn+2 )ξ yx(n+2)(n+1) =(∂ y (n+1)/ ∂xn+2 ) = y(n+2)(o) = ξn+2 y (n+2)(n+2) (n+1) = (∂ ξn+2 /∂xn+2 )ξ Since ξn+2 = f(ξ1 ,ξ2 , ………., ξn+1) An intensive property,ξn+2, is determined by the other (n + 1) intensive properties, ξi , Therefore, as other (n + 1) intensive properties are fixed, ξn+2 should be constant, ymm (m-1) = y (n+2)(n+2) (n+1) = (∂ ξn+2 /∂xn+2 )ξ= 0

ymm (m-1) = y (n+2)(n+2) (n+1) = (∂2 y (n+1) /∂xn+2 2)ξ = (∂/∂xn+2 )(∂ y (n+1)/ ∂xn+2 )ξ yx(n+2)(n+1) =(∂ y (n+1)/ ∂xn+2 ) = y(n+2)(o) = ξn+2 y (n+2)(n+2) (n+1) = (∂ ξn+2 /∂xn+2 )ξ ξn+2 = f(ξ1 ,ξ2 , ………., ξn+1) An intensive property,ξn+2, is determined by the other (n + 1) intensive properties, ξi , Therefore, as other (n + 1) intensive properties are fixed, ξn+2 should be constant, ymm(m-1) = y(n+2)(n+2) (n+1) = (∂ ξn+2 /∂xn+2 )ξ= 0

y11(o) > 0, y22(1) > 0, … , y(m-1)(m-1) (m-2) > 0, ymm (m-1) (= y(n+2)(n+2) (n+1) ) = 0 The number of criterion becomes y11(o) > 0, y22(1) > 0, … , y(m-1)(m-1) (m-2) > 0, ykk(k-1) > 0, k = 1, 2, …….., m-1 y (k-2) = f(ξ1 ,…,ξ(k-2) , x(k-1) ,…….., xm ) y (k-1) = f(ξ1 ,…………,ξ(k-1) , xk ,…….., xm ) By the step down procedure, ykk(k-1) = ykk(k-2) - [yk(k-1) (k-2) ]2/ y(k-1)(k-1) (k-2) (1) ykk(k-2) > 0, y(k-1)(k-1) (k-2) > 0 (2) Decrease y(k-1)(k-1) (k-2), increase [yk(k-1) (k-2) ]2/ y(k-1)(k-1) (k-2) , As continue to decrease y(k-1)(k-1) (k-2) , [yk(k-1) (k-2) ]2/ y(k-1)(k-1) (k-2) will be increased, and making{ ykk(k-2) - [yk(k-1) (k-2) ]2/ y(k-1)(k-1) (k-2) } approach to 0. Further. decrease y(k-1)(k-1) (k-2), { ykk(k-2) - [yk(k-1) (k-2) ]2/ y(k-1)(k-1) (k-2) } becomes smaller than negative, i.e., ykk(k-1) < 0

y(m-1)(m-1) (m-2) > 0 (7-15) It indicates the term,, ykk(k-1) becomes negative before y(k-1)(k-1) (k-2) keeps positive does, in other words, only if y(k-1)(k-1) (k-2) > 0, ykk(k-1) should be positive. Consequently, the necessary and sufficient condition criterion of stability, y(m-1)(m-1) (m-2) > 0 (7-15) The limit of stability or spinnodal condition is y(m-1)(m-1) (m-2) = 0 (7-16) y(m-1)(m-1) (m-2) = £i /Π y(r +1-)(r+1) (r) 0 ≦i ≦ m -2 (7-20) For a stable system, £i > 0 (7-17) At the limit of stability, £i= 0 (7-18) m = 3 r = i

£i = y (i+1) (i+1)(i), y (i+1) (i+2)(i), …….. …. y (i+1) (m-1)(i) y (i+2) (i+1)(i), y (i+2) (i+2)(i), …….. …. y (i+2) (m-1)(i) y (i+3) (i+1)(i), y (i+3 )(i+2)(i), …….. …. y (i+3) (m-1) (i) ……………………………………. y (m-1) (i+1)(i), y (m-1) (i+2)(i), …….. …. y (m-1) (m-1) (i) 0 ≦i ≦ m -2 £3 = y(m-1)(m-1) (m-2) = y44(3) = £2 /y33(2) = £1 /y33(2) y22(1) = £o /y33(2) y22(1) y11(o)

Multiple Phases multiple components equilibrium A multi-phases (Π), multi-component (n) system δS = Σ δS (s) = Σ {[1/T (s)] δ U(s) + [P (s)/T (s)] δ V(s) –Σ [μi (s)/T (s)] δNi (s) }= 0 δU = 0 = Σ δU (s) δV = 0 = Σ δV (s) δNi= 0 = Σ δ Ni(s) ,i = 1, 2,…., j,…., n δS = Σ [1/T(k) - 1/T(1) ] δ U(k) + [P (k)/T (k) - P (1)/T(1) ] δ V(k) – Σ [μi (k)/T (k) - μi(1)/T(1) ] δNi(k) = 0 T(k) = T(1) P(k) = P(1) k = 1, 2,…., Π μi (k) =μi(1) , i=1,2,…., n Π n Π Π Π Π n k ≠1

Chemical Reaction equilibria ν1C1 + ν2C2 + ….. + νiCi =0 Σ νjCj = 0 δN1/ν1 = δN2/ν2 = ………= δNi/νi = δξ δNj/νj = δξ , j = 1, 2,…i Σ δNj (s) = νj δξ For the inert components, Σ δNj (s) = 0, j = i + 1, …n δS = Σ [1/T(k) - 1/T (1) ] δ U(k) + [P (k)/T (k) - P (1)/T(1) ] δ V(k) – (1/T (1))Σνj μj δξ - Σ[μi (k)/T (k) - μi(1)/T(1) ] δNi(k) = 0 T(k) = T (1); P(k) = P (1); Σνj μj = 0; μi (k) =μi(1) , i = i+1,….., n

Membrane Equilibrium

T(1) = T(2) ; P(1) = P(2) ; μA (1) = μA(2) ; μB (1) = μB(2) The internal wall is movable, diathermal, and permeable to both A and B δU = 0 = δU (1) + δU (2) δV = 0 = δV (1) + δV (2) δNA = 0 = δ NA(1) + δ NA(2) δNB = 0 = δ NB(1) + δ NB(2) T(1) = T(2) ; P(1) = P(2) ; μA (1) = μA(2) ; μB (1) = μB(2)

Case (a) The internal boundary is permeable only to B, diathermal and movable δNA = 0 = δ NA(1) = δ NA(2) δNB = 0 = δ NB(1) + δ NB(2) δS = [1/T(1) - 1/T(2) ] δ U(1) + [P (1)/T (1) - P (2)/T(2) ] δ V(1) – [μB (1)/T (1) - μB(2)/T(2) ] δNB (1) = 0 T(1) = T(2) P(1) = P(2) μB (1) = μB(2)

Case (b) The internal boundary is rigid, diathermal, and permeable to both A and B, δU = 0 = δU (1) + δU (2) δV = 0 = δV (1) = δV (2) δNA = 0 = δ NA(1) + δ NA(2) δNB = 0 = δ NB(1) + δ NB(2) δS = [1/T(1) - 1/T(2) ] δ U(1) - [μA (1)/T (1) - μA(2)/T(2) ] δNA(1) – [μB (1)/T (1) - μB(2)/T(2) ] δNB (1) = 0 T(1) = T(2) μA (1) = μA(2) μB (1) = μB(2)

Case (b) The internal boundary is movable, adiabatic, and permeable to both A and B δU = 0 = δU (1) = δU (2) δV = 0 = δV (1) + δV (2) δNA = 0 = δ NA(1) + δ NA(2) δNB = 0 = δ NB(1) + δ NB(2) However, mass interchange between the subsystems, can vary the energy of each compartment; thus in reality, no additional restrains, and at equilibrium, T(1) = T(2) ; P(1) = P(2) ; μA (1) = μA(2) ; μB (1) = μB(2)

Derivation for Equations (7-5), (7-6) and (7-9) δ2S = (N/Nβ ) { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2ΣSUN[i]δUδNi + 2ΣSVN[i]δVδNi ] + ΣΣS NiNjδNiδNj }α < 0 ( 7-5) The similar procedure is used for the criterion of the internal energy, δ2U = (N/Nβ ) { (USSδS2 + 2 USVδSδV + UVVδV2 + 2ΣUSN[i]δSδNi + 2ΣUVN[i]δVδNi ] + ΣΣUNiNjδNiδNj }α > 0 ( 7-6) The mathematic expression, δ2y (o) = K ΣΣ y (o) ijδx iδx j > 0 ΣΣ y (o) ijδx iδx j = Σ ykk (k-1) δZk2 > 0 k = 1, 2,….., m

Consider the system is perturbed to become two phase α and β, δ2S = δ2Sα + δ2S β = {(∂2S/∂U2)VNδU2 + 2 Σ(∂2S/∂U∂V )NδUδV + (∂2S/∂V2)UNδV2 + 2Σ [(∂2S/∂U∂Ni)V, [Ni]δU + (∂2S/∂V∂Ni)U, N[i]δVi ]δNi + 2 Σ (∂2S/∂Ni∂Nj)U,V,N[i,j]δNiδNj }α + the similar terms of the β phase < 0 δ2S = { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2ΣSUN[i]δUδNi + 2ΣSVN[i]δVδNi ] + ΣΣS NiNjδNiδNj }α + the similar terms of the β phase < 0 < 0 (7-1)

(1)ΣδU = δUα + δUβ = 0; δUα = - δUβ ; (δUα)2 = (δUβ)2 ΣδV = δVα + δVβ = 0; δVα = - δVβ ; (δVα)2 = (δVβ)2 ; ΣδN = δNα + δNβ = 0; δNα = - δNβ; (δNα)2 = (δNβ)2 δUαδVα = ( - δUβ)( -δVβ ) δNα δVα =( - δNβ)( -δVβ ) δUα δNα =( - δUβ)( -δNβ ) (2) SUU = (∂2S/∂U2)VN= [(∂S/∂U)(∂S/∂U)VN ]VN = [(∂S/∂U )(1/T )]VN = (-1/T 2) (∂T/∂U)VN = (-1/T 2N) (∂T/∂U)VN SUUα + SUUβ = [( -1/T 2N)α + ( -1/T 2N)β](∂T/∂U )VNα Since (∂T/∂U ) VNα = (∂T/∂U ) VNβ; Tα = Tβ = (-1/T 2 )[Nα + Nβ) /NαNβ](∂T/∂U )VNα = (-1/T 2 )[N/ Nβ][(∂T/∂(NU )]VNα = (-1/T 2 )[N/ Nβ](∂T/∂U )VNα = [N/ Nβ] SUUα

(3) SVV = (∂2S/∂V2)UN (∂S/∂V) UN = - (∂U/∂V) SN / (∂U/∂S)VN = - (-P)/T SVV = (∂2S/∂V2)UN = [(∂ (P/T) /∂V]UN = [T( ∂P/∂V )UN - P( ∂T/∂V )UN]/T2 = (1/N) [T( ∂P/∂V )U - P( ∂T/∂V )U]/T2 SVVα + SVVβ = {(1/N) [T( ∂P/∂V )U - P( ∂T/∂V )U]/T2}α+ {(1/N) [T( ∂P/∂V )U - P( ∂T/∂V )U]/T2}β At equilibrium, (∂P/∂V)Uα = (-∂P/∂V)Uβ and (∂T/∂V)Uα = (∂T/∂V)Uβ SVVα + SVVβ = {(1/Nα + 1/Nβ) [T( ∂P/∂V )U - P( ∂T/∂V )U]/T2}α = [(Nα+ Nβ)/NαNβ] [T( ∂P/∂V )U - P( ∂T/∂V )U]/T2}α = (N/Nβ {[T[(∂P/∂(NV)]UN – P[∂T/∂(NV )U]/T2}α = (N/Nβ ) SVVα

(4) SUV = (∂2S/ ∂U∂V) N = [(∂/∂U ) (∂S /∂V)UN]VN (∂S/∂V) UN = P/T SUV = [(∂ (P/T) /∂U]UN = [T( ∂P/∂U )VN - P( ∂T/∂U )VN]/T2 = (1/N) [T( ∂P/∂U )V - P( ∂T/∂U )V]/T2 SUVα + SUVβ = {(1/N) [T( ∂P/∂U )V - P( ∂T/∂U )V]/T2}α+ {(1/N) [T( ∂P/∂U)V - P( ∂T/∂U )V]/T2}β At equilibrium, (∂P/∂U)Vα = (∂P/∂U)Vβ and (∂T/∂U)Vα = (∂T/∂U)Vβ SUVα + SUVβ = {(1/Nα + 1/Nβ) [T( ∂P/∂U)V - P( ∂T/∂U)V]/T2}α = [N/NαNβ] [T( ∂P/∂U)V - P( ∂T/∂U)V]/T2}α = (N/Nβ {[T[(∂P/∂(NU)]VN – P[∂T/∂(NU )VN]/T2}α = (N/Nβ ) SUVα

(SNNα + UNNβ) = {(1/N) [ - T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2]}α + (5) xα = Nα/(Nα + Nβ ) = Nα/N ; xβ = Nβ/N SNN = (∂2S/∂N2)UV= [(∂/∂N) (∂S/∂N)]UV (∂S/∂N)UV = - (∂U/∂N)SV /(∂U/∂S)NV = - μ/T (Triple-product rule) [(∂/∂N) (∂S/∂N)]UV = [(∂ (-μ/T) /∂N)] UV = (1/N) [(∂ (-μ/T) /∂x)]UV = (1/N) [(-∂ (μ/T) /∂x)]UV = (1/N) [- T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2] (SNNα + UNNβ) = {(1/N) [ - T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2]}α + {(1/N)[ - T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2]}β (∂ μ/∂x)UVα = (∂ μ/∂x)UVβ ; (∂T/∂x)vnα = (∂T/∂x)UVβ; Tα = Tβ (SNNα + UNNβ) = [ (1/Nα) + (1/Nβ)] [ - T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2]}α = (N/NβNα) {[ - T ( ∂μ/∂x) UV -μ(∂ T/∂x ) UV/T2]}α = (N/Nβ){ [ - T ( ∂μ/(N∂x)) UV -μ(∂ T/∂(Nx)]UV/T2]}α = (N/Nβ ) SUVα

δ2S = (N/Nβ ) { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2SUNδUδN + 2 SVNδVδN + S NNδN2}α < 0 ( 7-5) The result is extended to the equations for criterion of stability of multiple components system δ2S = (N/Nβ ) { (SUUδU2 + 2 SUVδUδV + SVVδV2 + 2ΣSUN[i]δUδNi + 2ΣSVN[i]δVδNi ] + ΣΣS NiNjδNiδNj }α < 0 ( 7-5) The similar procedure is used for the criterion of the internal energy, δ2U = (N/Nβ ) { (USSδS2 + 2 USVδSδV + UVVδV2 + 2ΣUSN[i]δSδNi + 2ΣUVN[i]δVδNi ] + ΣΣUNiNjδNiδNj }α < 0 ( 7-6)

Derivation for the mathematic expression for the criterion of stability δ2U = (N/Nβ ) { (USSδS2 + 2 USVδSδV + UVVδV2 + 2ΣUSN[i]δSδNi + 2ΣUVN[i]δVδNi ] + ΣΣUNiNjδNiδNj }α < 0 ( 7-6) U = U(S, V, N1, N2, ……, Ni, ……. Nn) Let y (o) = U, x1 = S, x2= V, x3= N1, ……….., xm= Nn y (o) = f (x1, x2, ……, xi, ……. xm) m = n + 2 δ2y (o) = K ΣΣ y (o) ijδx iδx j > 0 δ2y (o) = K Σ ykk (k-1) δZk2 > 0 k = 1, 2,….., m (7-9) δZ k = {δxk + (y(o)23 / y(o)11) δx2 + (y(o)33 / y(o)11))δx3 } k = 1, 2, ……,m δZ m= δxm for k = m

Let δZ 12 = {δS2 + 2 (USV/USS )δSδV + 2 (USN /USS ) δSδN + 2 Consider a single component system, δ2U = δ2Uα + δ2U β = (N/Nβ) {USSδS2 + 2USVδSδV +2 + 2 USNδS δN + 2 UVNδVδN + UNNδN2}α < 0 Use the square method for the equation “y” δ2U = USS {δS2 + 2 (USV/USS )δSδV + (UVV/USS ) δV2 + 2 (USN /USS )δS δN + 2 (UVN/USS )δVδN + (UNN/USS )δN2} = USS {δS2 + 2 (USV/USS )δSδV + 2 (USN /USS ) δSδN + 2 (USVUSN/USS2 ) δVδN + (USV/USS )2δV 2 + (UNN /USS ) 2δN2} + [UVVδV2– (USV2/USS) δV 2] + [2 UVNδVδN - 2 (USVUSN/USS2 )δVδN ] +[ UNNδN2 – (UNN2 /USS ) δN2 ] = USS {δS + (USV/USS )δV + (USN /USS)δN}2 + ( UVV- USV2/USS)δV 2 + 2 (UVN - USVUSN/USS2)δVδN + (UNN - USN2 /USS ) δN2 Let δZ 12 = {δS2 + 2 (USV/USS )δSδV + 2 (USN /USS ) δSδN + 2 (USVUSN/USS2 )δVδN + (USV/USS )2δV 2 + (UNN /USS ) 2δN2} ={δS + (USV/USS ) δV + (UNN /USS )δN} 2 -

δZ 1 = {δS + (USV/USS ) δV + (UNN /USS )δN} δ2U = USSδZ 12 + (UVV- USV2/USS) {δV 2 + 2 [(UVN - USVUSN/USS2 )/ (UVV- USV2/USS) ]δVδN + [( USV - USN2 /USS ) /(UVV- USV2/USS) ] 2 δN2 } + {(UNN - USN2 /USS ) - [( USV - USN2 /USS )2 /(UVV- USV2/USS) ] }δN2 Let δZ 22 = {δV 2 + 2 [(UVN - USVUSN/USS2 )/ (UVV- USV2/USS) ]δVδN + [( USV - USN2 /USS )/(UVV- USV2/USS) ] 2 δN2 } = {δV + [( USV - USN2 /USS )/(UVV- USV2/USS) }2 δZ 2 = {δV + [( USV - USN2 /USS )/(UVV- USV2/USS) } δZ3 = δN δ2U = USSδZ 12 + (UVV- USV2/USS) δZ 22 + {(UNN - USN2 /USS ) - [( USV - USN2 /USS )2 /(UVV- USV2/USS) ] } δZ3 2

Use the Legendre transform and Table 5-3 U = U(S, V, N) y(o) = y( x1, x2, x2) A = A(T, V, N) y(1) = y(ξ1, x2, x2) G = G(T, P, N) y(2) = y(ξ1, ξ2, x2) y(o)11 = USS , y(o)22 = UVV , y(o)12 = USV , y(o)13 = USN , y(o)23 = UVN , y(o)33 = UNN y(1)11 = ATT, y(1)22 = AVV, y(1)12 = ATV, y(1)13 = ATN, y(1)23 = AVN , y(1)33 = ANN y(2)33 = GNN {(Table 5-3-3 y(1)ij = y(o)ij - y(o)1iy(o)1j/ y(o)11 , i >1, j > 1} y(1)ii = y(o)ii - y(o)1i2/ y(o)11 , i >1 UVV - (USV2/USS) = y(o)22 - y(o)12 2 / y(o)11 = y(1)22 = AVV Ψ= {[UNN – (USN2 /USS )] – [(UVN - USVUSN/USS)] /(UVV – (USV2/USS)] } = [y(o)33 – y(o)132 / y(o)11] –[y(o)23 – y(o)12 y(o)13 / y(o)11] / [y(o)22 – y(o)122 / y(o)11]

= [y(o)33 – y(o)132 / y(o)11] – [y(o)23 – y(o)12 y(o)13 / y(o)11] / [y(o)22 – y(o)122 / y(o)11] = y(1)33 – y(1)23 / y(1)22 = y(2)33 = GNN δZ 1 = {δS + (USV/USS ) δV + (UNN /USS )δN} = {δx1 + (y(o)23 / y(o)11) δx2 + (y(o)33 / y(o)11))δx3 } δZ 2 = {δV + [( USV - USN2 /USS )/(UVV- USV2/USS) } = {δx2 + [(y(o)12 - USN2 / y(o)11)/(UVV- USV2/USS) } δZ k = {δxk + (y(o)23 / y(o)11) δx2 + (y(o)33 / y(o)11))δx3 } k = 1, 2, ……,m δZ m= δxm for k = m The criterion stability for pure component system δ2U = (N/Nβ)(USSδZ 12 + A22δZ 22 + G33δZ3 2) > 0 , then USS > 0 , AVV > 0 , G33 > 0

Example 7-3 U = y(o) = U(S, V, NA, NB, NC) ( m = 5) The criterion of stability is ykk(k-1) > 0, k = 1, 2, …….., (m-1) = 1, 2, 3, 4 y11(o) > 0, y22(1) > 0, y33(2) > 0, y44(3) > 0 A = y(1) = A(T, V, NA, NB, NC) G = y(2) = G(T, P, NA, NB, NC) G’ = y(3) = G’(T, V, μA, NB, NC) y11(o) = USS > 0, y22(1) = AVV > 0, y33(2) = GPP > 0, y44(3) = G μA μA > 0 Use the step down procedure y44(3) = y44(2) - [y34(2)] 2/ y33(2) = {y33(2) y44(2) - [y34(2)] 2 }/ y33(2) = y33(2) y34(2) y34(2) y44(2) y33(2)

F’ : (1-δjk) yjk(j-q) –δjk = (1-δ34) y34(1) –δ34 = y34(1) y22(1) y23(1) y24(1) y32(1) y33(1) y34(1) y42(1) y43(1) y44(1) y22(1) y23(1) y32(1) y33(1) D2 1 = y44(3) = D’: q -1 term, (1-δjk) y(j-p)k(j-q) , p = (q-1),(q -2), .1 D’: 1 term, (1-δ34) y24(1) = y24(1) F’ : (1-δjk) yjk(j-q) –δjk = (1-δ34) y34(1) –δ34 = y34(1) J’: q -1 term, (1-δij) yi (j-p) (j-q) , p = (q-1),(q -2),..1 1 term, (1-δ43) y42 (1) = y42 (1) K’: (1-δij)yij (j-q) –δji (1-δ34) y34(1) –δ34 = y34(1) = y43(1) L’: q -1 term, (1-δji) (1-δjk) yik(j-q) , 1 term, (1-δ34) (1-δ34) y44(1) = y44(1) y22(1) y23(1) y32(1) y33(1) Table 5-5, yik(j) , i, k > j j = 3, j – q = 1 , q = 2 D’ F’ D21 y44(3) = J’ K’ L’ D21

D : j-1 term, (1-δjk) ymk(o) , m = 1.2…,m y11(o) y12(o) y13(o) y14(o) y21(o) y22(o) y23(0) y24(o) y31(o) y32(o) y33(0) y34(o) y41(o) y42(o) y43(0) y44(o) y22(1) y23(1) y24(1) y32(1) y33(1) y34(1) y42(1) y43(1) y44(1) y44(3) = C: j -1 term, (1-δji) ymi(o) , m = 1.2…,m 2 terms, (1-δ34) y14(o) = y14(o) , y24(o) D : j-1 term, (1-δjk) ymk(o) , m = 1.2…,m 2 terms, (1-δ34) y14(o) = y14(o) , y24(o) E : (1-δji)yji (o) –δji (1-δ34) y34(o) –δ34 = y34(o) F : 1 term, (1-δjk) yjk(o) –δjk = y34(o) G : (1-δji)(1–δjk) yik(o) = y44(o) Table 5-4, yik(j) j < i, k D F Dj(o) yik(j) = C E G Dj(o)

y11(o) y12(o) y13(o) y14(o) y21(o) y22(o) y23(0) y24(o) y22(1) y23(1) y24(1) y32(1) y33(1) y34(1) y42(1) y43(1) y44(1) y33(2) y34(2) y34(2) y44(2) = = y44(3) = y22(1) y23(1) y32(1) y33(1) y33(2) y22(o) y23(o) y24(o) y32(o) y33(o) y34(o) y42(o) y43(o) y44(o) {y33(1) – (y23(1))2/ y22(1)] } y33(2) y22(1) y22(1) y23(1) y23(1) y22(1) y22(1) y33(2) = y33(2) y22(1) y11(o) y11(o) y12(o) y13(o) y21(o) y22(o) y23(o) y31(o) y32(o) y33(o) y11(o) y12o) y21(o) y22(o) y11(o) y12 (o) y21(o) y22(o) = y22(1) = y12(o)