Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Τεχνολογία ΛογισμικούSlide 1 Έλεγχος Καταψύκτη (Ada) Τεχνολογία ΛογισμικούSlide 39 with Pump, Temperature_dial, Sensor, Globals, Alarm; use Globals ; procedure.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
Προγραμματισμός ΙΙ Διάλεξη #5: Εντολές Ανάθεσης Εντολές Συνθήκης Δρ. Νικ. Λιόλιος.
Translation Tips LG New Testament Greek Fall 2012.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 3 part 2: Feminine Nouns 2015 edition Wilfred E. Major
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Ο PID έλεγχος. Integral Lag Distance velocity lag Υλοποιούμε την.
Δυνάμεις, Ροπές ως προς σημείο, Στατική Ισορροπία 1.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Μαθαίνω με “υπότιτλους”
Demand: key factors world economy sea borne commodity trade
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Ερωτήσεις –απαντήσεις Ομάδων Εργασίας
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Matrix Analytic Techniques
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Νομική Σχολή
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Class X: Athematic verbs II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Άλλη επιλογή: Κύλινδρος:
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
Εντολές Δικτύων Command Line.
Example Rotary Motion Problems
Οσμές στη Σχεδίαση του Λογισμικού
Γεώργιος Σ. Γκουμάς MD,PhD, FESC
Δικτυώματα (Δικτυωτοί Φορείς)
Υπολογισμός ορθών δυνάμεων, τεμνουσών δυνάμεων, και καμπτικών ροπών
2 Θεςη και διαταξη 11/9/2018 6:52 πμ ΔΡ. ΧΡΥΣΟΥΛΑ ΠΑΠΑΪΩΑΝΝΟΥ
2013 edition Wilfred E. Major
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Νομική Σχολή
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
النسبة الذهبية العدد الإلهي
GLY 326 Structural Geology
Find: angle of failure, α
CIRCLES Arc Length, Sectors, Sections.
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΑΠΟΣΤΑΞΗ Distillation.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
Μεταβλητή Κοστολόγηση: Εργαλείο Διοίκησης
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Class X: Athematic verbs II © Dr. Esa Autero
Baggy Bounds checking by Akritidis, Costa, Castro, and Hand
Μεταγράφημα παρουσίασης:

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] Find the effective length factor, K, for column B E. [pause] In this problem, --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] a 3-story structure expriences a compression load, of 180 kips, --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] in member B E. The lengths of all columns and girders --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] are provided, as well as the exact I beam type for 6 of those --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] steel members. [pause] The effective length factor, as part of a --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi] BE, EH  W10x33 DE, EF  W14x22 unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] structural frame, is determined by knowing the end condition --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] compression KBE = f (GB, GE) fy= 36 [ksi] unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D E F 12 [ft] coefficients of the member. Which for this problem, refers to joints --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE PBE=180 [k] compression KBE = f (GB, GE) fy= 36 [ksi] unbraced A B C 12 [ft] A) 1.00 B) 1.37 C) 1.43 D) 1.52 D F E 12 [ft] B and E. [pause] The end condition coefficients, equal, the sum of the --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg PBE=180 [k] columns KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg girders A B C 12 [ft] D E F 12 [ft] rotational stiffness values in the columns, divided by, the sum of the --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg PBE=180 [k] columns KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg girders A B C 12 [ft] D E F 12 [ft] rotational stiffness values in the girders. [pause] Since it’s safe to assume the --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg PBE=180 [k] columns KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg girders A B C 12 [ft] Ec = Eg D E F 12 [ft] the moduli of elasticity is constant, then these terms cancel out, --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg PBE=180 [k] columns KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg girders A B C 12 [ft] Ec = Eg D E F 12 [ft] and we’re left with the area moment of inertia, ---- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg area moment of inertia KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg member A B C 12 [ft] length Ec = Eg D E F 12 [ft] I, and the length of the member, L. [pause] In the event member B E, is, --- G H I 12 [ft] 20 [ft] 18 [ft]

Find: KBE λc>1.50 λc≤1.50 Σ Ec * Ic / Lc Σ Eg * Ig / Lg area moment of inertia KBE = f (GB, GE) Σ Ec * Ic / Lc λc>1.50 Gelastic= if Σ Eg * Ig / Lg member length λc≤1.50 if (inelastic) inelastic, then, the end condition coefficient at a joint, equals, ---

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg KBE = f (GB, GE) Gelastic= if Σ Ig / Lg Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) Tau, times, the elastic end condition coefficient, for that joint. We’ll begin by evaluating, ---

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? KBE = f (GB, GE) Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) lambda c, the slenderness parameter, which equals, ---

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) K L, over r times Pi, times root f y over E. Since we’re interested in --- K * L fy λc = * r * π E

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) member B E, we’ll add subscripts B E to the equation, --- K * L fy λc = * r * π E

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) [pause] From the problem statement, we know the yield stress in the steel, --- KBE * LBE fy λc = * rBE * π E

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) equals 36 ksi, which is the same as, --- KBE * LBE fy fy= 36 [ksi] λc = * rBE * π E

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) 36,000 pounds per square inch. And it’s generally assumed the modulus of elasticity --- KBE * LBE fy fy= 36 [ksi] λc = * rBE * π E fy=36,000 [lb/in2]

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) equals, 2.9*107 pound per inch squared. [pause] We can determine the length, ---- KBE * LBE fy fy= 36 [ksi] λc = * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc>1.50 λc≤1.50 Σ Ic / Lc Σ Ig / Lg ? λc = * KBE = f (GB, GE) Σ Ic / Lc λc>1.50 Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) L, by looking back the structure, --- KBE * LBE fy fy= 36 [ksi] λc = * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc>1.50 λc≤1.50 ? λc = * A B C 12 [ft] KBE = f (GB, GE) D if G H I 12 [ft] ? λc≤1.50 if 20 [ft] 18 [ft] (inelastic) locating column B E, and noting it’s length is --- KBE * LBE fy fy= 36 [ksi] λc = * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc>1.50 λc≤1.50 ? λc = * A B C 12 [ft] KBE = f (GB, GE) D if G H I 12 [ft] ? λc≤1.50 if 20 [ft] 18 [ft] (inelastic) 12 [in/ft] * 12 feet, or, 144 inches. For a W10 by 33 steel member, --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc>1.50 λc≤1.50 ? λc = * A B C 12 [ft] W10x33 D E F if G H I 12 [ft] ? λc≤1.50 if 20 [ft] 18 [ft] (inelastic) 12 [in/ft] * the radius of gyration about the strong axis, equals, --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc = * A B C 12 [ft] W10x33 D E F 12 [ft] rx=4.184 [in] G H 12 [in/ft] * 4.184 inches. [pause] The last unknown variable is --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2]

Find: KBE λc = * A B C 12 [ft] W10x33 D E F 12 [ft] G H I 12 [ft] 12 [in/ft] * the effective length factor, K, which is the variable --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc = * A B C 12 [ft] W10x33 D E F 12 [ft] G H I 12 [ft] 12 [in/ft] * were solving for. So we’ll compute lamba c, as --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc =0.3860 * KBE λc = * A B C 12 [ft] W10x33 D E F 12 [ft] G H I 12 [ft] λc =0.3860 * KBE 20 [ft] 18 [ft] 12 [in/ft] * 0.3860, times the effective length factor in columnd B E. Since this doesn’t answer our question regarding --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc>1.50 λc≤1.50 λc =0.3860 * KBE Σ Ic / Lc Σ Ig / Lg ? Gelastic= if Σ Ig / Lg ? Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) λc =0.3860 * KBE 12 [in/ft] * which equation to use, we’ll assume lambda c, is greater than 1.50, and compute --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc>1.50 λc≤1.50 λc =0.3860 * KBE Σ Ic / Lc Σ Ig / Lg λc = Gelastic= if Σ Ig / Lg assume true Ginelastic= τ * Gelastic λc≤1.50 if (inelastic) λc =0.3860 * KBE 12 [in/ft] * the end condition coefficients using the top equation. Then, using those values, --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc>1.50 λc =0.3860 * KBE Σ Ic / Lc Σ Ig / Lg λc = * Gelastic= if Σ Ig / Lg assume true GB KBE GE λc =0.3860 * KBE 12 [in/ft] * we’ll compute the effective length factor, K, for member B E, and then check our assumption, --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc>1.50 λc =0.3860 * KBE Σ Ic / Lc Σ Ig / Lg λc = * Gelastic= if Σ Ig / Lg ? check GB assumption KBE GE λc =0.3860 * KBE 12 [in/ft] * that lambda c is greater than 1.50. [pause] The end condition coefficient for Joint B, --- KBE * LBE fy λc = 144 [in] * rBE * π E fy=36,000 [lb/in2] E=2.9*107 [lb/in2] r=4.184 [in]

Find: KBE λc>1.50 IBE / LBE GB= if IAB / LAB + IBC / LBC ? A B C 12 [ft] D E F is computed by plugging in the appropriate lengths, --- G H I 20 [ft] 18 [ft]

Find: KBE λc>1.50 IBE / LBE GB= if IAB / LAB + IBC / LBC ? A B C 12 [ft] D E F and plugging in the area moment of inertia values, --- G H I 20 [ft] 18 [ft]

Find: KBE λc>1.50 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? BE  W10x33  IBE=170 [in4] about the stronger axis. The end condition coefficient at joint B equals, --- AB  W12x14  IAB=88.6 [in4] G H I BC  W12x14  IBC=88.6 [in4] 20 [ft] 18 [ft]

Find: KBE λc>1.50 170 [in4] 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? 20 [ft] 18 [ft] 88.6 [in4] A B C GB=1.52 D E F 1.52. [pause] Joint E is computed --- G H I 20 [ft] 18 [ft]

Find: KBE λc>1.50 170 [in4] 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? 20 [ft] 18 [ft] 88.6 [in4] GB=1.52 IBE / LBE + IEH / LEH GE= in a similar manner. After plugging in the lengths and area moments of --- IDE / LDE + IEF / LEF

Find: KBE λc>1.50 170 [in4] 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? 20 [ft] 18 [ft] 88.6 [in4] GB=1.52 12 [ft] 170 [in4] IBE / LBE + IEH / LEH GE= inertia, the end condition coefficient, at Joint E, equals, --- IDE / LDE + IEF / LEF 20 [ft] 199 [in4] 18 [ft]

Find: KBE λc>1.50 170 [in4] 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? 20 [ft] 18 [ft] 88.6 [in4] GB=1.52 12 [ft] 170 [in4] IBE / LBE + IEH / LEH GE= 1.35. [pause] Keep in mind, these two end condition coefficients --- IDE / LDE + IEF / LEF 20 [ft] 199 [in4] 18 [ft] GE=1.35

Find: KBE λc>1.50 170 [in4] 12 [ft] IBE / LBE GB= if IAB / LAB + IBC / LBC ? 20 [ft] 18 [ft] 88.6 [in4] assumed elastic GB=1.52 12 [ft] 170 [in4] IBE / LBE + IEH / LEH GE= refer to an elastic condition in the I beam. Therefore, we can --- IDE / LDE + IEF / LEF 20 [ft] 199 [in4] 18 [ft] assumed elastic GE=1.35

Find: KBE λc>1.50 GB=1.52 if GE=1.35 ? effective length alignment chart determine the effective length factor, if lambda c is greater than 1.50, by marking --- Gtop K Gbottom

Find: KBE λc>1.50 GB=1.52 if GE=1.35 ? effective length alignment chart GE GB G B and G E on the effective length alignment chart, and the assumed effective length factor --- Gtop K Gbottom

Find: KBE λc>1.50 GB=1.52 if GE=1.35 ? effective length alignment chart GE GB equals 1.43. [pause] Now we can check our assuptions regarding lambda c, --- KBE=1.43 Gtop K Gbottom

Find: KBE λc>1.50 λc =0.3860 * KBE GB=1.52 if GE=1.35 ? effective length alignment chart GE GB which equals, 0.3860 times 1.43, or -- λc =0.3860 * KBE KBE=1.43 Gtop K Gbottom

Find: KBE λc>1.50 λc =0.3860 * KBE λc =0.552 GB=1.52 if GE=1.35 effective length alignment chart GE GB 0.552, which is less than 1.50. Therefore, we know the end conditions coefficients --- λc =0.3860 * KBE KBE=1.43 λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic (inelastic) effective length alignment chart GE GB we calcaulted need to be multiplied by Tau, so we can find the inelastic end condition coefficients. λc =0.3860 * KBE KBE=1.43 λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) effective length alignment chart GE GB From before, we know G B and G E, for the elastic case. And Tau, represents the stiffness --- λc =0.3860 * KBE KBE=1.43 λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 stiffness GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) effective length stiffness alignment chart reduction factor GE GB reduction factor, which can be determined using the stiffness reduction --- λc =0.3860 * KBE KBE=1.43 λc =0.552 Gtop K Gbottom

τ Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 stiffness GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) stiffness reduction stiffness alignment chart reduction factor alignment chart. Where the elastic end condition coefficients --- λc =0.3860 * KBE λc =0.552 τ Gtop Gbottom

τ Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 stiffness GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) stiffness reduction stiffness alignment chart reduction factor GE GB are plotted out as before, and Tau B E, equals, --- λc =0.3860 * KBE λc =0.552 τ elastic Gtop Gbottom

τBE=0.83 τ Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) stiffness reduction stiffness alignment chart reduction factor GE GB 0.83. [pause] Plugging in 0.83, for Tau, --- τBE=0.83 λc =0.3860 * KBE λc =0.552 τ elastic Gtop Gbottom

τBE=0.83 τ Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 1.52 1.35 GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) stiffness reduction stiffness alignment chart reduction factor GE GB the inelastic end condition coefficients for joints B and E, equal, --- τBE=0.83 λc =0.3860 * KBE λc =0.552 τ elastic Gtop Gbottom

τBE=0.83 τ Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 0.83 1.52 1.35 GB,inelastic= τ * GB,elastic λc≤1.50 if GE,inelastic= τ * GE,elastic 1.35 (inelastic) GB,inelastic= 1.26 GE,inelastic= 1.12 GE GB 1.26 and 1.12, respectively. [pause] Now we can return to the --- τBE=0.83 λc =0.3860 * KBE λc =0.552 τ elastic Gtop Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 GB,inelastic= 1.26 if GE,inelastic= 1.12 effective length alignment chart effective length alignment chart. Plug in the 2 inelastic end condition --- λc =0.3860 * KBE λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 GB,inelastic= 1.26 if GE,inelastic= 1.12 effective length alignment chart GE coefficients, and the effective length factor, for member B E, --- GB λc =0.3860 * KBE λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 λc =0.3860 * KBE λc =0.552 GB,inelastic= 1.26 if GE,inelastic= 1.12 effective length alignment chart GE equals, 1.37. [pause] GB λc =0.3860 * KBE KBE=1.37 λc =0.552 Gtop K Gbottom

Find: KBE λc≤1.50 GB,inelastic= 1.26 if GE,inelastic= 1.12 effective length A) 1.00 B) 1.37 C) 1.43 D) 1.52 alignment chart GE When reviewing the possible solutions, --- GB KBE=1.37 Gtop K Gbottom

Find: KBE λc≤1.50 GB,inelastic= 1.26 if GE,inelastic= 1.12 effective length A) 1.00 B) 1.37 C) 1.43 D) 1.52 alignment chart GE the answer is B. GB answerB KBE=1.37 Gtop K Gbottom