Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Τεχνολογία ΛογισμικούSlide 1 Έλεγχος Καταψύκτη (Ada) Τεχνολογία ΛογισμικούSlide 39 with Pump, Temperature_dial, Sensor, Globals, Alarm; use Globals ; procedure.
Translation Tips LG New Testament Greek Fall 2012.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 3 part 2: Feminine Nouns 2015 edition Wilfred E. Major
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Υπολογισμός ορθών και τεμνουσών δυνάμεων, και καμπτικών ροπών ΔΙΑΓΡΑΜΜΑΤΑ M, N, Q 1.
Lesson 1c: Basic words, common objects JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Lesson 1a: Basic words, common objects JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Introduction to Latent Variable Models. A comparison of models X1X1 X2X2 X3X3 Y1Y1 δ1δ1 δ2δ2 δ3δ3 Model AModel B ξ1ξ1 X1X1 X2X2 X3X3 δ1δ1 δ2δ2 δ3δ3.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Αλγόριθμοι Ταξινόμησης – Μέρος 3
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Class X: Athematic verbs II
φίλτρα IIR (Infinite Impulse Response)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΟΡΓΑΝΩΣΗ ΑΘΛΗΤΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
Υπολογισμός ορθών δυνάμεων, τεμνουσών δυνάμεων, και καμπτικών ροπών
2013 edition Wilfred E. Major
How to Make Simple Solutions and Dilutions Taken from: Resource Materials for the Biology Core Courses-Bates College (there may be errors!!)
Πανεπιστήμιο Θεσσαλίας
Εκπαιδευτική ρομποτική
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
JSIS E 111: Elementary Modern Greek
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Deriving the equations of
Variable-wise and Term-wise Recentering
Μεταβλητή Κοστολόγηση: Εργαλείο Διοίκησης
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Κοστολόγηση κατά Φάση Τέταρτο Κεφάλαιο
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand 4 [ft] γT=100 [lb/ft3] Find the settlement from consolidation in inches from a load. In this problem, Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand 4 [ft] γT=100 [lb/ft3] a vertical load of 800 pounds per square foot is applied to a soil profile consisting of --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand 4 [ft] γT=100 [lb/ft3] an 8 foot layer of clay, which is above --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand 4 [ft] γT=100 [lb/ft3] a four foot layer of sand, which is above --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand 4 [ft] γT=100 [lb/ft3] a 10 foot layer of clay. We’ve also been provided --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] 1.5 3.0 C) 4.5 D) 6.0 CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] various soil properties. In this problem, Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] only the clay layers will settle from consolidation. For both clay layers, we’ve been provided the --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] the over consolidation ratio, Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] the recompression index, Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] and the compression index, sometimes called the virgin compression index. Soil settlement can be plotted --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] on a graph where the vertical axis --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] is the void ratio, and the horizontal axis is --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] Log of the vertical effective stress. The preconsolidated stress of the soil occurs --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] where the curve changes slope. There is an graphical technique used to determine the preconsolidation stress, Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] but I’ll skip that for now. If the soil is normally consolidated, the point on the curve would be here, Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] recompression e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] with the recompression curve to the left of the point, Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] recompression virgin compression e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] and the virgin compression curve to the right. Since we notice that ---- Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] recompression virgin compression e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] both layers of clay are over consolidated, they would both begin --- Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] recompression e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] on the recompression curve. [pause] The final vertical effective stress on the soil --- Clay CR=0.04 e=0.80 σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’i σ’p σ’final = σ’initial +Load Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] equals the initial vertical effective stress --- Clay CR=0.04 e=0.80 σ’i σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’final = σ’initial +Load

Find: ρc [in] from load eo σ’i σ’p σ’final = σ’initial +Load Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] plus the load. Clay CR=0.04 e=0.80 σ’i σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’final = σ’initial +Load

Find: ρc [in] from load eo σ’i σ’p σ’final = σ’initial +Load Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] If the final stress is less than --- Clay CR=0.04 e=0.80 σ’i σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’final = σ’initial +Load

Find: ρc [in] from load eo σ’i σ’f σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] log σ’v eo Clay CR=0.03 e=1.00 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] the preconsolidation stress, Clay CR=0.04 e=0.80 σ’i σ’f σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’i σ’f σ’p σ’i < σ’f < σ’p Load=800 [lb/ft2] CR=0.03 e=1.00 log σ’v eo Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] then the entire consolidation occurs along the recompression curve, Clay CR=0.04 e=0.80 σ’i σ’f σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

Find: ρc [in] from load eo σ’i σ’f σ’p σ’i < σ’f < σ’p Load=800 [lb/ft2] CR=0.03 e=1.00 log σ’v eo Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] which has a slope equal in magnitude to the recompression index, Clay CR=0.04 e=0.80 σ’i σ’f σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

( ) Find: ρc [in] from load H*C σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] If this is the case, we would use the recompression index --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

( ) ( ) Find: ρc [in] from load H*C σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ Clay CR=0.03 e=1.00 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] H*CR σfinal ( ) ‘ ρc= log Sand 1+e σinitial γT=100 [lb/ft3] in the consolidation settlement equation. [pause] However, --- ‘ 4 [ft] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

Find: ρc [in] from load eo σ’i σ’p γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] e=1.00 log σ’v eo Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] if the final stress exceeds --- Clay CR=0.04 e=0.80 σ’i σ’p CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’i σ’p σ’f γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] log σ’v eo Clay CR=0.03 e=1.00 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] the preconsolidation stress, Clay CR=0.04 e=0.80 σ’i σ’p σ’f CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load eo σ’i σ’p σ’f σ’i < σ’p < σ’f Load=800 [lb/ft2] CR=0.03 e=1.00 log σ’v eo Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] we’ll end up evaluating --- Clay CR=0.04 e=0.80 σ’i σ’p σ’f CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load eo σ’i σ’p σ’f σ’i < σ’p < σ’f Load=800 [lb/ft2] CR=0.03 e=1.00 log σ’v eo Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] part of the settlement along the recompression curve, and part of the settlement --- Clay CR=0.04 e=0.80 σ’i σ’p σ’f CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load eo σ’i σ’p σ’f σ’i < σ’p < σ’f Load=800 [lb/ft2] CR=0.03 e=1.00 log σ’v eo Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] along the virgin compression curve. When solving for this second settlement, --- Clay CR=0.04 e=0.80 σ’i σ’p σ’f CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

( ) ( ) ( ) + Find: ρc [in] from load H*C σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ Clay CR=0.03 e=1.00 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] H*CR σp ( ) ‘ ρc= log Sand 1+e σinitial ‘ γT=100 [lb/ft3] 4 [ft] we compute the two consolidation settlements separately, then add them together. Let’s begin with the 8 foot layer of clay. H*CC σfinal ( ) ‘ + Clay CR=0.04 e=0.80 log 1+e σp ‘ CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay γT=110 [lb/ft3] Load=800 [lb/ft2] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] The initial effective stress is equal to the effective unit weight times the depth. Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay γT=110 [lb/ft3] Load=800 [lb/ft2] 110 [lb/ft3] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] Since the groundwater table is deep, the effective unit weight equals 110 pounds per cubic foot. Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay γT=110 [lb/ft3] Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] If we don’t subdivide the layer, we’ll set the depth equal to the middle of the layer, so, ‘d’ equals 4 feet. Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay γT=110 [lb/ft3] Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] our initial stress is 440 pounds per square feet. Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] And after adding the load, --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] our final stress equals --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] 1,240 pounds per square feet. [pause] = 1,240 [lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] And our preconsolidation stress is --- = 1,240 [lb/ft2] σ’p = σ’i * OCR Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] the initial stress times the overconsolidation ratio, or, = 1,240 [lb/ft2] σ’p = σ’i * OCR Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] 1,320 pounds per square feet. [pause] Since the final stress --- = 1,240 [lb/ft2] σ’p = σ’i * OCR Clay CR=0.04 e=0.80 = 1,320 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = γ’clay* dclay σ’f = σ’i + load Load=800 [lb/ft2] 110 [lb/ft3] 4 [ft] σ’i = γ’clay* dclay e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 = 440 [lb/ft2] 8 [ft] γT=110 [lb/ft3] σ’f = σ’i + load Sand γT=100 [lb/ft3] 4 [ft] is less than the preconsolidated stress,--- = 1,240 [lb/ft2] σ’p = σ’i * OCR Clay CR=0.04 e=0.80 = 1,320 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

Find: ρc [in] from load σ’i = 440 [lb/ft2] σ’f = 1,240 [lb/ft2] Load=800 [lb/ft2] σ’i = 440 [lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] σ’f = 1,240 [lb/ft2] Sand γT=100 [lb/ft3] 4 [ft] the settlement at a depth of 4 feet is only along the recompression curve. σ’p = 1,320 [lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

Find: ρc [in] from load σ’i = 440 [lb/ft2] σ’f = 1,240 [lb/ft2] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] For this problem, we’ll assume this is true for the entire 8 foot thick layer of clay. σ’i = 440 [lb/ft2] Clay CR=0.04 e=0.80 σ’f = 1,240 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

( ) Find: ρc [in] from load H*CR σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] e=1.00 Clay CR=0.03 H*CR σfinal ( ) ‘ ρc= log CC=0.54 OCR=3.0 1+e σinitial 8 [ft] ‘ γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] So we substitute in our known values --- σ’i = 440 [lb/ft2] Clay CR=0.04 e=0.80 σ’f = 1,240 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

( ) Find: ρc [in] from load H*CR σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] e=1.00 Clay CR=0.03 H*CR σfinal ( ) ‘ ρc= log CC=0.54 OCR=3.0 1+e σinitial 8 [ft] ‘ γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] and find the settlement in the top clay layer is σ’i = 440 [lb/ft2] Clay CR=0.04 e=0.80 σ’f = 1,240 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

( ) Find: ρc [in] from load H*CR σfinal ρc= log 1+e σinitial Load=800 [lb/ft2] e=1.00 Clay CR=0.03 H*CR σfinal ( ) ‘ ρc= log CC=0.54 OCR=3.0 1+e σinitial 8 [ft] ‘ γT=110 [lb/ft3] Sand ρc=0.65[in] γT=100 [lb/ft3] 4 [ft] 0.65 inches. [pause] σ’i = 440 [lb/ft2] Clay CR=0.04 e=0.80 σ’f = 1,240 [lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’f < σ’p

Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] Next we’ll evaluate the settlement in the 10 foot thick clay layer. Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = Σ γ’ * d γT=110 [lb/ft3] γT=100 [lb/ft3] Load=800 [lb/ft2] σ’i = Σ γ’ * d e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] As before, Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = Σ γ’ * d σ’i = γ’clay,top*dclay,top Load=800 [lb/ft2] σ’i = Σ γ’ * d e=1.00 σ’i = γ’clay,top*dclay,top Clay CR=0.03 CC=0.54 OCR=3.0 + γ’sand*dsand 8 [ft] γT=110 [lb/ft3] + γ’clay,bot*dclay,bot Sand γT=100 [lb/ft3] 4 [ft] we determine the vertical effective stress the the midpoint of the clay layer Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = Σ γ’ * d σ’i = γ’clay,top*dclay,top Load=800 [lb/ft2] σ’i = Σ γ’ * d e=1.00 σ’i = γ’clay,top*dclay,top Clay CR=0.03 CC=0.54 OCR=3.0 + γ’sand*dsand 8 [ft] γT=110 [lb/ft3] + γ’clay,bot*dclay,bot Sand γT=100 [lb/ft3] 4 [ft] Where the depth into the 10 foot clay layer will be calculated with ‘d’ equal to 5 feet. 5[ft] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = Σ γ’ * d σ’i = γ’clay,top*dclay,top Load=800 [lb/ft2] σ’i = Σ γ’ * d e=1.00 σ’i = γ’clay,top*dclay,top Clay CR=0.03 CC=0.54 OCR=3.0 + γ’sand*dsand 8 [ft] γT=110 [lb/ft3] + γ’clay,bot*dclay,bot Sand γT=100 [lb/ft3] 4 [ft] The initial stress is 1,880 pounds per square foot. 5[ft] σ’i = 1,880[lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] γT=110 [lb/ft3] Load=800 [lb/ft2] CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] --- σ’i = 1,880[lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] After adding the load, --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] Sand γT=100 [lb/ft3] 4 [ft] we calculate the final stress value to be --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] = 2,680[lb/ft2] Sand γT=100 [lb/ft3] 4 [ft] 2,680 pounds per square feet. [pause] For this lower clay layer, --- Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] = 2,680[lb/ft2] Sand γT=100 [lb/ft3] 4 [ft] the pre-consolitation stress calculates to ---- σ’p = σ’i * OCR Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] = 2,680[lb/ft2] Sand γT=100 [lb/ft3] 4 [ft] 2,256 pounds per square feet. This means, the final stress exceeds --- σ’p = σ’i * OCR = 2,256[lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3]

Find: ρc [in] from load σ’i = 1,880[lb/ft2] σ’f = σ’i + load Load=800 [lb/ft2] σ’i = 1,880[lb/ft2] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] σ’f = σ’i + load γT=110 [lb/ft3] = 2,680[lb/ft2] Sand γT=100 [lb/ft3] 4 [ft] the preconsolidated stress of the soil, which means this 10 foot thick clay layer of clay --- σ’p = σ’i * OCR = 2,256[lb/ft2] Clay CR=0.04 e=0.80 CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

( ) ( ) Find: ρc [in] from load H*CR σp ρc= log 1+e σinitial Load=800 [lb/ft2] H*CR σp ( ) ‘ ρc= log 1+e σinitial CR=0.03 e=1.00 Clay CC=0.54 OCR=3.0 H*CC σfinal ( ) ‘ 8 [ft] γT=110 [lb/ft3] log 1+e σp ‘ Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] will consolidate along the recompression curve AND the virgin compression curve. After substituting in, --- σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

( ) ( ) Find: ρc [in] from load H*CR σp ρc= log 1+e σinitial Load=800 [lb/ft2] H*CR σp ( ) ‘ ρc= log 1+e σinitial e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 H*CC σfinal ( ) ‘ 8 [ft] γT=110 [lb/ft3] log 1+e σp ‘ Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] all the required values, we calculate the consolidation settlement equals --- σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc= 0.21[in]+3.59[in] σ’i = 1,880[lb/ft2] Load=800 [lb/ft2] ‘ ρc= 0.21[in]+3.59[in] e=1.00 Clay CR=0.03 CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] 0.21 inches along the recompression curve and 3.59 inches along the virgin compression curve. For a total of ---- σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc= 0.21[in]+3.59[in] σ’i = 1,880[lb/ft2] Load=800 [lb/ft2] ‘ ρc= 0.21[in]+3.59[in] CR=0.03 e=1.00 Clay = 3.80[in] CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] 3.80 inches of consolidation settlement. [pause] σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc,total =ρc,top+ρc,bottom σ’i = 1,880[lb/ft2] Load=800 [lb/ft2] ‘ e=1.00 Clay CR=0.03 ρc,total =ρc,top+ρc,bottom CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] After adding the settlement --- σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc,total =ρc,top+ρc,bottom σ’i = 1,880[lb/ft2] Load=800 [lb/ft2] ‘ 3.80[in] 0.65[in] CR=0.03 e=1.00 Clay ρc,total =ρc,top+ρc,bottom CC=0.54 OCR=3.0 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] from both clay layers together, σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc,total =ρc,top+ρc,bottom = 4.45 [in] Load=800 [lb/ft2] ‘ 3.80[in] 0.65[in] e=1.00 Clay CR=0.03 ρc,total =ρc,top+ρc,bottom CC=0.54 OCR=3.0 = 4.45 [in] 8 [ft] γT=110 [lb/ft3] Sand γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] We find the total settlement is 4.45 inches. σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc,total =ρc,top+ρc,bottom = 4.45 [in] Load=800 [lb/ft2] ‘ 3.80[in] 0.65[in] e=1.00 Clay CR=0.03 ρc,total =ρc,top+ρc,bottom CC=0.54 OCR=3.0 = 4.45 [in] 8 [ft] γT=110 [lb/ft3] Sand 1.5 3.0 C) 4.5 D) 6.0 γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] So we return to our possible solutions σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

Find: ρc [in] from load ρc,total =ρc,top+ρc,bottom = 4.45 [in] Load=800 [lb/ft2] ‘ 3.80[in] 0.65[in] CR=0.03 e=1.00 Clay ρc,total =ρc,top+ρc,bottom CC=0.54 OCR=3.0 = 4.45 [in] 8 [ft] γT=110 [lb/ft3] Answer: C Sand 1.5 3.0 C) 4.5 D) 6.0 γT=100 [lb/ft3] σ’i = 1,880[lb/ft2] 4 [ft] and find the answer is C σ’f = 2,680[lb/ft2] Clay CR=0.04 e=0.80 σ’p = 2,256[lb/ft2] CC=0.72 OCR=1.2 10[ft] γT=120 [lb/ft3] σ’i < σ’p < σ’f

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘