Curs 08 Amplificatoare de semnal mic cu tranzistoare

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
A E M C parate lectronice de ăsurare şi ontrol Prelegerea nr. 5 CIRCUITE DE CONVERSIE NUMERIC - ANALOGICĂ ŞI ANALOG-NUMERICĂ Universitatea Tehnică “Gheorghe.
Advertisements

Producerea curentului electric alternativ
Informatica industriala
DISPOZITIVE ELECTRONICE ȘI CIRCUITE
MĂSURĂRI ELECTRICE ȘI ELECTRONICE Conf. dr. ing
Curs 14 Sef Luc Dr. Petru A. COTFAS
Relații Monetar-Financiare Internaționale Curs 9
Functia de transfer Fourier Sisteme si semnale
lectronică pentru utomobile E A
4. CIRCUITE ELECTRONICE ANALOGICE FOLOSITE ÎN SISTEMELE DE MĂSURAT
Proiectarea Microsistemelor Digitale
Introducere Circuite NMOS statice
LB. gr.: Φιλο-σοφία Philo-sophia Iubirea-de-înțelepciune
Calculul ecranelor CONTRACTUL CNCSIS 429/2006 Studiul proprietăţilor de ecranare a materialelor obţinute prin nanotehnologii şi nanoprocese în vederea.
U. Oscilații și unde U.1. Oscilatorul armonic
prof.dr.ing. Mircea CHINDRIŞ
UNIVERSITATEA DIN CRAIOVA
Circuite cu reactie pozitiva Circuite Trigger Schmitt
4. TRANZISTORUL BIPOLAR 4.1. GENERALITĂŢI PRIVIND TRANZISTORUL BIPOLAR STRUCTURA ŞI SIMBOLUL TRANZISTORULUI BIPOLAR ÎNCAPSULAREA ŞI IDENTIFICAREA.
UNIVERSITATEA POLITEHNICA TIMIŞOARA
Curs 5 Sef Luc Dr. Petru A. COTFAS
Circuite numerice Parametrii circuitelor logice integrate
Informatica Industriala
Legea lui Ohm.
Amplificatoare de semnal mic cu tranzistoare
REALIZAREA MAGISTRALELOR CU CIRCUITE LOGICE
Convertoare eşantionarea digitizarea semnalului
MĂSURAREA ŞI ANALIZA VIBRAŢIILOR STRUCTURILOR
Circuite cu reactie pozitiva
STABILIZATOARE DE TENSIUNE LINIARE
Amplificatoare de semnal mic cu tranzistoare
Anul I - Biologie Titular curs: Conf. dr. Zoiţa BERINDE
Electromagnetismul Se ocupă de studiul fenomenelor legate de:
DISPOZITIVE ELECTRONICE ȘI CIRCUITE-1
Universitatea Tehnică din Cluj Napoca
CIRCUITE ANALOGICE SI NUMERICE
Aparate Electrice Speciale
Dioda semiconductoare
TRANSFORMATA FOURIER (INTEGRALA FOURIER).
Informatica industriala
Noţiuni de mecanică În mecanica clasică, elaborată de Isaac Newton ( ), se consideră că timpul curge uniform, într-un singur sens, de la trecut,
8. STABILIZATOARE DE TENSIUNE 8. 1
Curs 08 Amplificatoare de semnal mic cu tranzistoare
TEOREMA LUI PITAGORA, teorema catetei si teorema inaltimii
PROIECTAREA SI INTRETINEREA UNUI TRANSFORMATOR TRIFAZAT
Curs 6 Sef Luc Dr. Petru A. COTFAS
UNDE ELECTROMAGNETICE
Exemple de probleme rezolvate pentru cursul 09 DEEA
Sisteme de achizitii, interfete si instrumentatie virtuala
Parametrii de repartiţie “s” (scattering parameters)
DISPOZITIVE ELECTRONICE ȘI CIRCUITE
Sisteme de ordinul 1 Sisteme si semnale Functia de transfer Fourier
MATERIALE SEMICONDUCTOARE
In sistemele clasice, fara convertoare de putere se datoreaza:
Lucrarea 3 – Indici ecometrici
Circuite logice combinaţionale
Curs 6 Sef Luc Dr. Petru A. COTFAS
Efectul Puncturării asupra codurilor TURBO şi a decodării MAP
Serban Dana-Maria Grupa: 113B
Familia CMOS Avantaje asupra tehnologiei bipolare:
Aplicatie SL.Dr.ing. Iacob Liviu Scurtu
TRIUNGHIUL.
Aplicaţiile Efectului Joule
Rabaterea Sl.Dr.Ing. Iacob-Liviu Scurtu b ` d ` δ ` a ` c ` X d o a c
G R U P U R I.
CUPLOARE.
Transfigurarea schemelor bloc functionale
Receptorul de măsurare
Informatica industriala
APLICAŢII ALE FUNCŢIILOR TRIGONOMETRICE ÎN ELECTROTEHNICĂ CURENTUL ALTERNATIV Mariş Claudia – XI A Negrea Cristian – XI A.
Μεταγράφημα παρουσίασης:

Curs 08 Amplificatoare de semnal mic cu tranzistoare Partea II – Amplificatoare cu tranzistoare MOS

Amplificatoare de semnal mic cu tranzistoare MOS etaj de amplificare cu tranzistor MOS în conexiunea SURSĂ COMUNĂ etaj de amplificare cu tranzistor MOS în conexiunea DRENĂ COMUNĂ etaj de amplificare cu tranzistor MOS în conexiunea GRILĂ COMUNĂ

Etaj de amplificare cu tranzistor MOS în conexiunea SURSĂ COMUNĂ Punctul static de funcţionare verificarea funcţionării MOS in reg. saturaţie Parametrii de semnal mic valoare medie = zeci kΩ valoare medie = kΩ amplificare mare; defazaj 1800 amplificare mare; defazaj 00

Conectarea circuitelor externe la amplificator Amplificarea in tensiune reală Amplificarea in curent reală Condiţiile necesare pentru eliminarea pierderilor de tensiune la bornele intrare/ieşire Condiţiile necesare pentru eliminarea pierderilor de curent la bornele intrare/ieşire

Etaj de amplificare cu tranzistor MOS în conexiunea SURSĂ COMUNĂ – varianta modificată Punctul static de funcţionare identic ca pentru primul amplificator Parametrii de semnal mic valoare medie = zeci kΩ valoare medie = kΩ amplificare mică; defazaj 1800

Etaj de amplificare cu tranzistor MOS în conexiunea DRENĂ COMUNĂ Punctul static de funcţionare verificarea funcţionării MOS in reg. saturaţie Parametrii de semnal mic valoare medie = zeci kΩ valoare mică = zeci Ω nu amplifică; defazaj 00 amplificare mare; defazaj 1800

Conectarea circuitelor externe la amplificator Amplificarea in tensiune reală Amplificarea in curent reală Condiţiile necesare pentru eliminarea pierderilor de tensiune la bornele intrare/ieşire Condiţiile necesare pentru eliminarea pierderilor de curent la bornele intrare/ieşire

Etaj de amplificare cu tranzistor MOS în conexiunea GRILĂ COMUNĂ Punctul static de funcţionare verificarea funcţionării MOS in reg. saturaţie Parametrii de semnal mic valoare mică = zeci Ω valoare medie = kΩ amplificare mare; defazaj 00 nu amplifică; defazaj 1800

Conectarea circuitelor externe la amplificator Amplificarea in tensiune reală Amplificarea in curent reală Condiţiile necesare pentru eliminarea pierderilor de tensiune la bornele intrare/ieşire Condiţiile necesare pentru eliminarea pierderilor de curent la bornele intrare/ieşire

Punctul static de funcţionare Exemplul 1: se consideră amplificatorul cu tranzistor MOS din figura de mai jos, în care, parametrii tranzistorului MOS sunt: VTH=1V, k=0.25mA/V2. Se cer: PSF-ul tranzistorului, determinarea valorilor parametrilor de semnal mic Ri, Ro şi Av, Ai, factorul de amplificare de tensiune real, pentru cazul în care la intrarea amplificatorului se conectează un generator de semnal a cărui rezistenţă internă este 600Ω, iar la ieşire o rezistenţă de sarcină de 4kΩ. Să se deseneze formele de undă ale tensiunii de intrare vG şi de ieşire vO pentru cazul în care vG(t)=1xsint [V]. Să se determine factorul de amplificare în curent real. Punctul static de funcţionare ID VDS VGS VGG ID se alege soluţia VGS>VTH verificarea funcţionării MOS in reg. saturaţie

Parametrii de semnal mic

Calcularea factorului de amplificare în tensiune real

Formele de undă ale tensiunii de intrare şi de ieşire volti 1 vG(t) = tensiune de intrare  2 -1 2 vo(t) = tensiune de ieşire - 2 Defazajul de 180

Calcularea factorului de amplificare în curent real

1. Stabilirea parametrilor amplificatoarelor Exemplul 2: să se determine amplificarea transadmitanţă reală obţinută prin conectarea unui amplificator de tensiune la intrarea unui amplificator transadmitanţă. Se consideră că la intrarea amplificatorului de tensiune se conectează un generator de tensiune vG a cărui rezistenţă internă este Rg=600Ω, iar la ieşirea amplificatorului de transadmitanţă se conectează rezistenţa de sarcină RL=10kΩ. Se consideră că cele 2 amplificatoare au parametrii: Amplificatorul de tensiune: rezistenţa de intrare = 1,8kΩ rezistenţa de ieşire = 2kΩ amplificarea în tensiune ideală = 5 rezistenţa de intrare = 3kΩ rezistenţa de ieşire = 10kΩ amplificarea transadmitanţă ideală = 20mA/V Să se determine amplitudinea curentului de ieşire din circuit, dacă amplitudinea tensiunii de intrare este Vg=0,25V 1. Stabilirea parametrilor amplificatoarelor Amplificatorul de tensiune: Ri1 = 1,8kΩ Ro1 = 2kΩ Av = 5 Amplificatorul transadmitanţă: Ri2 = 3kΩ Ro2 = 10kΩ Ay = 20mA/V

2. Stabilirea circuitului de calcul 3. Calculul amplificării transadmitanţă reale

4. Calculul amplitudinii curentului de ieşire