Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Translation Tips LG New Testament Greek Fall 2012.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
Διαλυτότητα οργανικών ουσιών
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Δυνάμεις, Ροπές ως προς σημείο, Στατική Ισορροπία 1.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
OFDM system characteristics. Effect of wireless channel Intersymbol interference in single carrier systems due to multipath propagation with channel delay.
Guide to Business Planning The Value System © Guide to Business Planning The “value system” is also referred to as the “industry value chain”. In contrast.
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Αντικειμενοστραφής Προγραμματισμός ΙΙ
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Κεφάλαιο 12 Δάση.
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Class X: Athematic verbs II
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Οσμές στη Σχεδίαση του Λογισμικού
Αντίληψη αντίληψη του φυσικού κόσμου που μας περιβάλλει, μέσω του νευρικού μας συστήματος αποτελεί δημιούργημα του εγκεφάλου και άρα τα χαρακτηριστικά.
Δικτυώματα (Δικτυωτοί Φορείς)
How to Make Simple Solutions and Dilutions Taken from: Resource Materials for the Biology Core Courses-Bates College (there may be errors!!)
Μία πρακτική εισαγωγή στην χρήση του R
Ανάλυση Γεωργικού Οικογενειακού Εισήματος (ΓΟΕ)
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Expression Home All In One Inkjet Printers
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
All In One Inkjet Printers
All In One Inkjet Printers
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
All In One Inkjet Printers
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
Βάλια Τόλιου, Registry Manager for Greece
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
Μεταβλητή Κοστολόγηση: Εργαλείο Διοίκησης
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Κοστολόγηση κατά Φάση Τέταρτο Κεφάλαιο
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Class X: Athematic verbs II © Dr. Esa Autero
Μεταγράφημα παρουσίασης:

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ 6 7 8 9 square footing 6 7 8 9 d t B [ft] Gravelly Sand Q=400 [k] Find the minimum base width, B, for the square footing. [pause] In this problem, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ 6 7 8 9 square footing 6 7 8 9 d t B [ft] Gravelly Sand Q=400 [k] a square footing supports an axial load, Q, and sits 3 feet beneath the surface of a gravelly sand. γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ 6 7 8 9 square footing 6 7 8 9 d t B [ft] Gravelly Sand Q=400 [k] A number of other variables are also given. [pause] γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ square SF = 3 footing d t B [ft] Gravelly Sand Q=400 [k] Let’s begin with the safety factor, 3, which equals --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult square SF = 3 = footing qall d t B [ft] Gravelly Sand Q=400 [k] the ultimate bearing capacity divided by the allowable bearing capacity. Or more simply, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult square SF = 3 = footing qall d qult = 3 * qall t B [ft] Gravelly Sand Q=400 [k] the ultimate bearing capacity is 3 times the allowable bearing capacity. As far as safety goes, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult square SF = 3 = footing qall d qult > 3 * qall t B [ft] Gravelly Sand Q=400 [k] We should consider 3, to be the minimum allowable safety factor. Since both of these values are functions of --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult square SF = 3 = footing qall d qult = 3 * qall t B [ft] qult = f(B) Gravelly Sand qall = f(B) Q=400 [k] the base width, B, our strategy will be to solve for both bearing capacities, in term of B, and then return to this equation and solve for B directly. γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult square SF = 3 = footing qall d qult = 3 * qall t B [ft] qult = f(B) Gravelly Sand qall = f(B) Q=400 [k] Let’s begin by solving for the ultimate bearing capacity in terms of B. γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ square footing d t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand Q=400 [k] For a square footing, our ultimate bearing capacity equals --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ square footing cohesion multiplier d t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand cohesion Q=400 [k] 1.2 times the cohesion, times the cohesion multiplier, plus --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ wedge weight square footing multiplier cohesion multiplier d t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand cohesion base width Q=400 [k] 0.4 times the effective unit weight times the base width times the wedge weight multiplier, plus --- effective unit γcon=150 [lb/ft3] weight γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ wedge weight square footing multiplier cohesion overburden multiplier d multiplier t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand cohesion base width Q=400 [k] the overburden stress times the overburden multiplier. effective unit γcon=150 [lb/ft3] overburden weight γT=120 [lb/ft3] stress d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ wedge weight square footing multiplier cohesion overburden multiplier d multiplier t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand cohesion base width Q=400 [k] The three multiplier terms are also called bearing capacity factors, --- effective unit γcon=150 [lb/ft3] overburden weight γT=120 [lb/ft3] stress d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ wedge weight square footing multiplier cohesion overburden multiplier d multiplier t qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq B [ft] Gravelly Sand cohesion base width Q=400 [k] which are all a functions of the angle of internal friction, phi. effective unit γcon=150 [lb/ft3] overburden weight γT=120 [lb/ft3] stress d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Gravelly Sand Q=400 [k] The bearing capacity factors are solved for by first solving --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Q=400 [k] N sub q, the overburden multiplier. Phi is --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Q=400 [k] plugged into the equation, and N sub q equals --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Nq = 37.75 Q=400 [k] 37.75 γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Nq = 37.75 Q=400 [k] The other two bearing capacity factors are solved for --- Nc = (Nq-1) * cot φ γcon=150 [lb/ft3] Nγ = 2 * (Nq+1) * tan φ γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Nq = 37.75 Q=400 [k] by plugging in phi and N sub q --- Nc = (Nq-1) * cot φ γcon=150 [lb/ft3] Nγ = 2 * (Nq+1) * tan φ γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion wedge overburden multiplier weight multiplier square d t multiplier footing B [ft] Nq = tan2(45+φ/2) * eπ * tanφ Gravelly Sand Nq = 37.75 Q=400 [k] [pause] Nc = (Nq-1) * cot φ=50.58 γcon=150 [lb/ft3] Nγ = 2 * (Nq+1) * tan φ=56.31 γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing B [ft] Gravelly Sand Q=400 [k] We’ll next solve for the cohesion, the effective unit weight and the overburden stress. γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing B [ft] Gravelly Sand Q=400 [k] Since the soil is a gravelly sand, --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] Gravelly Sand Q=400 [k] the cohesion equals 0. γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand Q=400 [k] Since the groundwater table is not mentioned, γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand Q=400 [k] the effective unit weight of the soil equals the total unit weight of the soil, γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand γ’= 120 [lb/ft3] Q=400 [k] which is 120 pounds per cubic feet. γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand γ’= 120 [lb/ft3] Q=400 [k] q= γ’*h Lastly, the overburden stress equals the effective unit weight of the soil, times the depth of the footing, --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand γ’= 120 [lb/ft3] Q=400 [k] q= γ’*h which is 120 pounds per cubic feet, times 3 feet, or, --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] γ’= γT-u Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq cohesion overburden effective stress square unit weight d t footing c=0 [lb/ft2] B [ft] γ’= γT-u Gravelly Sand γ’= 120 [lb/ft3] Q=400 [k] q= γ’*h 360 pounds per square feet. γcon=150 [lb/ft3] q= 360 [lb/ft2] Nq = 37.75 γT=120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq square d t footing B [ft] Gravelly Sand Q=400 [k] If we plug these values into the equation --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] c=0 [lb/ft2] γ’= 120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] q= 360 [lb/ft2] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq qult=1.2 * 0 [lb/ft2] * 50.58 +0.4 * 120 [lb/ft3] * B * 56.31 square footing + 360 [lb/ft2] * 37.75 B [ft] Gravelly Sand Q=400 [k] we find the ultimate bearing capacity equals --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] c=0 [lb/ft2] γ’= 120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] q= 360 [lb/ft2] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q qult=1.2*c*Nc+0.4*γ’*B*Nγ+q*Nq qult=1.2 * 0 [lb/ft2] * 50.58 +0.4 * 120 [lb/ft3] * B * 56.31 square footing + 360 [lb/ft2] * 37.75 B [ft] qult=2,703 * B [lb/ft3] + 13,590 [lb/ft2] Q=400 [k] 2,703 times B pounds per cubic feet, plus 13,590 pounds per square foot. [pause] Returning to our initial equation, --- γcon=150 [lb/ft3] Nq = 37.75 γT=120 [lb/ft3] c=0 [lb/ft2] γ’= 120 [lb/ft3] Nc = 50.58 d=3 [ft] t=2 [ft] q= 360 [lb/ft2] Nγ = 56.31 φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult SF = 3 = qall square d qult = 3 * qall t footing B [ft] qult=2,703 * B [lb/ft3] + 13,590 [lb/ft2] Q=400 [k] we have now solved for the ultimate bearing capacity, in terms of B. γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚ qult SF = 3 = qall square d qult = 3 * qall t footing B [ft] qult=2,703 * B [lb/ft3] + 13,590 [lb/ft2] Q=400 [k] Next we’ll solve for the allowable stress, in terms of B. [pause] For a square footing, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square d t footing B [ft] Gravelly Sand Q=400 [k] the allowable bearing capacity equals the contribution from --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square d t axial footing stress B [ft] Gravelly Sand Q=400 [k] the axial stress, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square d t footing axial footing weight stress B [ft] Gravelly Sand Q=400 [k] the footing weight, --- γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square soil d t footing axial footing weight weight stress B [ft] Gravelly Sand Q=400 [k] and the weight of the soil, above the footing. γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square soil d t footing axial footing weight weight stress B [ft] Gravelly Sand Q + γcon*t + γT*(d-t) qall= Q=400 [k] B squared cancells out in the second and third terms, and the equation is simplified. Next, --- B2 γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square soil d t footing axial footing weight weight stress B [ft] Gravelly Sand Q + γcon*t + γT*(d-t) qall= Q=400 [k] the known values are plugged in the equation, and the allowable stress equals --- B2 γcon=150 [lb/ft3] γT=120 [lb/ft3] d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

γcon*B2*t γT*B2*(d-t) Find: minimum B [ft] γcon=150 [lb/ft3] Q γcon*B2*t γT*B2*(d-t) Q + + qall= B2 B2 B2 square soil d t footing axial footing weight weight stress B [ft] Gravelly Sand Q + γcon*t + γT*(d-t) qall= Q=400 [k] 400,000 pounds divided by the base area, plus 420 pounds per square feet. B2 γcon=150 [lb/ft3] γT=120 [lb/ft3] 400,000 [lb] qall= +420 [lb/ft2] B2 d=3 [ft] t=2 [ft] φ=36˚ SF=3.0

Find: minimum B [ft] Q +420 [lb/ft2] qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] qult=2,703 * B [lb/ft3] + 13,590 [lb/ft2] Having solved for the ultimate and allowable bearing capacities, in terms of the base width, B, we will now directly solve for B. 400,000 [lb] qall= +420 [lb/ft2] B2

Find: minimum B [ft] Q +420 [lb/ft2] qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] qult=2,703 * B [lb/ft3] + 13,590 [lb/ft2] After plugging in these values and simplifying, --- 400,000 [lb] qall= +420 [lb/ft2] B2

Find: minimum B [ft] Q qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] We end up with a third degree polynomial. If we keep in mind that B is in units of feet, we can simplify the equation to read ---

Find: minimum B [ft] Q qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] B in [ft] 0 equals, 901 times B cubed, plus 4,110 times B squared minus 400,000. Solving for the roots of B, the only non-imaginary solution is --- 0=901* B3 + 4,110 * B2 - 400,000

Find: minimum B [ft] Q qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] B in [ft] B equals 6.37 feet. To ensure the safety factor is at least 3, --- 0=901* B3 + 4,110 * B2 - 400,000 B1=(imaginary) B2=(imaginary) B3=6.37 [ft]

Find: minimum B [ft] Q qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] B in [ft] B should be rounded up to 7 feet. 0=901* B3 + 4,110 * B2 - 400,000 B1=(imaginary) B2=(imaginary) B=7 [ft] B3=6.37 [ft]

Find: minimum B [ft] Q 6 7 8 9 qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] B in [ft] Looking back at the possible solutions, --- 0=901* B3 + 4,110 * B2 - 400,000 B1=(imaginary) B2=(imaginary) B=7 [ft] B3=6.37 [ft]

Find: minimum B [ft] Q 6 7 8 9 AnswerB qult qall qult = 3 * qall SF = 3 = qall square d qult = 3 * qall t footing B [ft] 0=901* B3 [lb/ft3] + 4,110 * B2 [lb/ft2] + 400,000 [lb] B in [ft] the answer is B. 0=901* B3 + 4,110 * B2 - 400,000 B1=(imaginary) AnswerB B2=(imaginary) B=7 [ft] B3=6.37 [ft]

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘