Ειδικά θέματα σε κινητά και ασύρματα δίκτυα

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Πληροφορική Κεφάλαιο 6 ο : Δίκτυα Υπολογιστών Κλεπετσάνης Παύλος, Επίκουρος Καθηγητής Τμήμα Φαρμακευτικής.
Advertisements

Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων Ενότητα 2: Η πρώτη περίοδος της εκκλησιαστικής υμνογραφίας (Α´ - Δ´αι.) Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα.
Εορτολογία Ενότητα 2: Η εορτή του Πάσχα Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα Κοινωνικής Θεολογίας.
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων
Όνομα Καθηγητή: Χρήστος Τερέζης
Ασύρματα δίκτυα τύπου ad hoc
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών
Ειδικά θέματα σε κινητά και ασύρματα δίκτυα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Ειδικά θέματα σε κινητά και ασύρματα δίκτυα
Εορτολογία Ενότητα 3: Η Εορτή των Χριστουγέννων και Θεοφανείων
Εορτολογία Ενότητα 8: Οι Εορτές των Αγίων Γεώργιος Φίλιας
Ενότητα 9: Ο Χειμώνας Διδάσκουσα: Βασιλική Φωτοπούλου
ΚΟΙΝΟΤΙΚΗ ΝΟΣΗΛΕΥΤΙΚΗ Ι
Εορτολογία Ενότητα 4: Οι Εορτές της Αναλήψεως και της Πεντηκοστής
ΜΕΤΑΠΤΥΧΙΑΚΟ ΣΕΜΙΝΑΡΙΟ ΝΑΥΤΙΛΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ Container Security
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Διδακτική της Πληροφορικής & των ΤΠΕ
Εξέλιξη των ιδεών στις Φυσικές Επιστήμες
Νεοελληνικό εκπαιδευτικό σύστημα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
Σχολή Ανθρωπιστικών και Κοινωνικών Σπουδών Τμήμα Φιλοσοφίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Τμήμα Κοινωνικής Θεολογίας
Θεωρία & Αλγόριθμοι Γράφων Δένδρα
Διδακτική των εικαστικών τεχνών Ενότητα 2
Ενότητα 5: Συναισθήματα θετικά και δυσάρεστα
ΦΙΛΟΣΟΦΙΑ ΤΟΥ ΔΙΚΑΙΟΥ Ενότητα 8: Το Σύνταγμα του 1975: τα μέρη του και το περιεχόμενό του Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών.
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Εισαγωγή στις Επιστήμες της Αγωγής
Τεχνολογικό Εκπαιδευτικό
Έννοιες Φυσικών Επιστημών Ι
Σχολή Ανθρωπιστικών και Κοινωνικών Σπουδών Τμήμα Φιλοσοφίας
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΓΡΑΦΟΝΤΑΣ ΜΙΑ ΕΡΓΑΣΙΑ.
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
Όνομα Καθηγητή: Χρήστος Τερέζης
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 3: Το παράδειγμα της Τρέισι Λάτιμερ (συνέχεια) Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών και Κοινωνικών.
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 9 (PART B): Σχέση Ηθικής και Δικαιοσύνης
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 8 (PART A): Εταιρική Κοινωνική Ευθύνη και Επιχειρείν Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών και Κοινωνικών.
ΒΑΡΟΜΕΤΡΟ ΕΒΕΘ – Σεπτέμβριος 2017
Διδακτική Μαθηματικών ΙΙ
Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή Εύη Παπαϊωάννου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ηλεκτροτεχνία Εργαστήριο Ι
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Ασύρματα δίκτυα τύπου ad hoc
ΕΝΙΑΙΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΟΜΙΚΗΣ ΣΧΟΛΗΣ Ε. Κ. Π. Α
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΣΧΕΔΙΟ ΑΞΙΟΛΟΓΗΣΗΣ (Σ.Α.)
Μεταγράφημα παρουσίασης:

Ειδικά θέματα σε κινητά και ασύρματα δίκτυα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα

Περιεχόμενα ενότητας Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα

Ειδικά θέματα σε κινητά και ασύρματα δίκτυα Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα

Ασύρματα δίκτυα τύπου ad hoc Τοπικά (LAN) ή άλλα μικρά δίκτυα …με ασύρματες συνδέσεις …οι συσκευές αποτελούν μέρος του δικτύου μόνο όσο επικοινωνούν με αυτό ή …όσο είναι τοπικά κοντά στο δίκτυο Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 5

Ασύρματα δίκτυα τύπου ad hoc Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 6

Ασύρματα δίκτυα τύπου ad hoc Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 7

Ασύρματα δίκτυα τύπου ad hoc Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 8

Ασύρματα δίκτυα τύπου ad hoc Δε διαθέτουν ενσύρματη υποδομή Το δίκτυο φτιάχνεται από κόμβους – ασύρματες συσκευές που λειτουργούν με περιορισμένη ενέργεια (π.χ., με μπαταρίες) και μπορούν να στέλνουν και να λαμβάνουν μηνύματα μέσω αμφικατευθυνόμενων κεραιών Η ύπαρξη και η λειτουργία των δικτύων αυτών σχετίζεται άμεσα με το πόσο θα κρατήσει η ενέργεια των κόμβων Αυτό τα κάνει ενδιαφέροντα λόγω πολλών εφαρμογών που έχουν τα χρησιμοποιούμε όπου δε μπορούμε να έχουμε καλώδια και για συλλογή και επεξεργασία δεδομένων και αρκούν κόμβοι με μπαταρίες Από την άλλη πλευρά το θέμα της αποδοτικής διαχείρισης της ενέργειας που υπάρχει στο δίκτυο είναι δύσκολο και επομένως ενδιαφέρον Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 9

Ασύρματα δίκτυα τύπου ad hoc                                                                                                                                Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 10

Ασύρματα δίκτυα τύπου ad hoc Τηλεφωνικές συσκευές (κινητές, ασύρματες) Ασύρματες συσκευές πολυμέσων (ακουστικά, ηχεία, μικρόφωνα) Φορητοί υπολογιστές (laptops, desktop) Ασύρματες περιφερειακές συσκευές (πληκτρολόγια, mouse) Περιφερειακά τοπικού δικτύου (LAN – Local Area Network) (εκτυπωτές, fax) PDAs - Personal Digital Assistants (palm top/pilot) Ψηφιακές φωτογραφικές μηχανές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 11

Ασύρματα δίκτυα τύπου ad hoc: παραδείγματα/εφαρμογές Αίθουσα Σχολείο: Ad hoc δίκτυο μεταξύ των PDAs των φοιτητών και του σταθμού εργασίας του καθηγητή Μουσείο: Ad hoc δίκτυο μεταξύ των PDAs των επισκεπτών και του φορητού υπολογιστή του ξεναγού Χώροι μεγάλης έκτασης Εταιρεία/Πανεπιστημιούπολη: Οι εργαζόμενοι μετακινούνται σε μεγάλη περιοχή με PDAs, laptops και κινητά τηλέφωνα Αρχαιολογικός/εκθεσιακός χώρος: Οι επισκέπτες μετακινούνται σε μεγάλη περιοχή με PDAs, laptops, κινητά τηλέφωνα, ηλεκτρονικά βραχιολάκια π.χ. Virtual Guide XENAGOS - http://www.virtualguide.gr/Greek/index.html Μετακινούμενοι στρατιώτες με υπολογιστικές συσκευές (π.χ., ρολόγια, GPS, κτλ) που τις φοράνε Μπορούν να πραγματοποιήσουν υποκλοπές, επιθέσεις denial-of-service και impersonation Εμπορικά κέντρα, εστιατόρια, καφέ, αεροδρόμια Οι πελάτες ξοδεύουν μέρος της μέρας τους σε δικτυωμένο εμπορικό κέντρο με ποικιλία καταστημάτων, καφέ, εστιατορίων, … (m-commerce) Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 12

Το σύστημα ΜΤΑ στο Ντουμπάι ΜΤΑ: Mobile Tourist Agent Σύστημα παροχής τουριστικών πληροφοριών είτε για την πόλη είτε για το χώρο διαμονής Οποιαδήποτε κινητή συσκευή ή PDA χρησιμοποιείται για τη λήψη πληροφοριών από έναν server Μέσω διαδραστικού χάρτη της πόλης δίνονται πληροφορίες για ξενοδοχεία, εστιατόρια, θέατρα, πρεσβείες, εντοπισμό θέσης, συνάλλαγμα, καιρό,… Υπάρχει και απλούστερη έκδοση που εκτελείται από υπολογιστή και δεν απαιτεί εγκατάσταση στο κινητό Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 13

Ασύρματα δίκτυα αισθητήρων – «έξυπνη σκόνη» (smart dust) Η εφαρμογή αναπτύχθηκε αρχικά από το πανεπιστήμιο του Berkeley με χρηματοδότηση του DAPRA με υλοποίηση ασύρματου δικτύου Αισθητήρων μεγάλης κλίμακας και ονομάστηκε Smart Dust (έξυπνη σκόνη) Το Smart Dust προοριζόταν αρχικά για τη εξ αποστάσεως παρακολούθηση εχθρικών στρατευμάτων από το στρατό μέσω χιλιάδων ασύρματων μικροαισθητήρων “motes” διασκορπισμένων στο πεδίο της μάχης Το Smart Dust βρήκε πληθώρα εφαρμογών όπως για παρακολούθηση των ατμοσφαιρικών και καιρικών συνθηκών Ενδιαφέρουσα είναι και η βιοτεχνολογική προσέγγιση τις ιδέας με motes από χημικά συστατικά αντί για ηλεκτρονικά κυκλώματα… Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 14

Ασύρματα δίκτυα αισθητήρων – «έξυπνη σκόνη» (smart dust) Χιλιάδες έως εκατομμύρια μικροί αισθητήρες σχηματίζουν ασύρματα δίκτυα που οργανώνονται μόνα τους (χωρίς κεντρικό συντονισμό) Οι κόμβοι είναι μικρές συσκευές που λειτουργούν με μπαταρίες και επικοινωνούν με έναν ισχυρότερο σταθμό βάσης ο οποίος συνδέεται με εξωτερικό δίκτυο Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 15

Ασύρματα δίκτυα αισθητήρων – «έξυπνη σκόνη» (smart dust) Επικοινωνία αισθητήρα  σταθμό βάσης: π.χ. δεδομένα αισθητήρα Επικοινωνία σταθμού βάσης  αισθητήρα, π.χ. συγκεκριμένες απαιτήσεις Σταθμός βάσης  όλους τους αισθητήρες, π.χ. πληροφορίες δρομολόγησης, ερωτήσεις ή επαναπρογραμματισμός του δικτύου Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 16

WSN για την έγκαιρη ανίχνευση προβλημάτων σε αγωγούς British Petroleum WSN για μέτρηση μη φυσιολογικών δονήσεων κατά τη διάρκεια γεωτρήσεων ώστε να προειδοποιούνται οι μηχανικοί για πιθανή επερχόμενη βλάβη του εξοπλισμού WSN για την εξ αποστάσεως παρακολούθηση του επιπέδου πληρότητας των δεξαμενών υγραερίου Με χρήση υπερηχητικού αισθητήρα στη δεξαμενή μετριέται η πληρότητα και στη συνέχεια εκπέμπεται μέσω δορυφόρου χαμηλής τροχιάς σε ένα σταθμό βάσης με αποτέλεσμα να ενημερώνονται οι πελάτες πριν τελειώσουν τα αποθέματα τους Η επίτευξη αντίστοιχων αποτελεσμάτων με ενσύρματα μέσα θα ήταν αδύνατη… Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 17

Zebranet για παρακολούθηση άγριας ζωής στην Κένυα WSN που ανέπτυξε το Πανεπιστήμιο Princeton το 2005 (www.princeton.edu/mrm/zebranet.htm) για την παρακολούθηση της μετανάστευσης, της συνύπαρξης με άλλα είδη και της νυχτερινής συμπεριφοράς πληθυσμών ζέβρας στην Αφρική Οι ζέβρες φέρουν αισθητήρες Περιβαλλοντικές δυσκολίες (νερό, δαγκώματα) Η θέση GPS λαμβάνεται κάθε 3 λεπτά Λεπτομερής πληροφορία λαμβάνεται κάθε ώρα (ένδειξη για ήλιο/σκιά, ταχύτητα) Κινούμενος σταθμός βάσης που δεν είναι συνεχώς διαθέσιμος Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 18

WSN για την παρακολούθηση της καταπόνησης σιδηροτροχιών σε γέφυρα 10 κόμβοι αισθητήρες Εύρος μετάδοσης: 100 m Λειτουργία με χαμηλή ισχύ που αυξάνεται όταν εμφανίζεται τραίνο Οι ρυθμοί καταπόνησης καταγράφονται στους κόμβους σε Flash μνήμη Ο σταθμός βάσης συλλέγει τα δεδομένα περιοδικά Γέφυρα Ben Franklin, Philadelphia,US Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 19

Υποθαλάσσιο ακουστικό WSN Υψηλή εξασθένιση σήματος Πολλά σφάλματα στη μετάδοση Προσωρινές απώλειες σύνδεσης Καταστροφή αισθητήρων Πρόβλημα με μπαταρίες (δε μπορεί να χρησιμοποιηθεί ηλιακή ενέργεια) Περιορισμοί στο εύρος ζώνης J. M. Daladier, Διδακτορική Διατριβή, University of South Florida (2009) Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 20

Έξυπνα σπίτια Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 21

WSN στο ανθρώπινο σώμα (Body Sensor Networks - BSN) Οι σύγχρονες υπηρεσίες τηλεϊατρικής στοχεύουν στο διαρκή εξ αποστάσεως έλεγχο της κατάστασης της υγείας του ασθενούς μέσω της συλλογής, επεξεργασίας, αξιολόγησης, αξιοποίησης και αποθήκευσης κατάλληλης πληροφορίας Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 22

CodeBlue: Wireless Sensors for Medical Care (Harvard) WSN για παροχή ενδο/εξω-νοσοκομειακής επείγουσας περίθαλψης και αποκατάστασης ασθενών Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 23

WSN για αυτόματο έλεγχο/ επίβλεψη σε μουσεία (Πορτογαλία) L.M. Rodríguez Peralta, L.M.P.L. Brito, B.A.T. Gouveia, D.J.G. Sousa, & C.S. Alves.Automatic monitoring and control of museums’ environment based on Wireless Sensor Networks. EJSE Special Issue: Wireless Sensor Networks and Practical Applications, pp. 12-34, 2010. http://www.ejse.org/Archives/Fulltext/2010/Special/Paper02.pdf Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 24

WSN για συλλογικά μουσικά δρώμενα Santiago J. Barro, TiagoM. Fernandez-Carames, and Carlos J. Escudero. Enabling Collaborative Musical Activities through Wireless Sensor Networks. International Journal of Distributed Sensor Networks, Vol. 2012, Article ID 314078, 13 pages, Hindawi Publishing Corporation, 2012. http://www.hindawi.com/journals/ijdsn/2012/314078/ Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 25

WSN για μελέτη μαθησιακών διαδικασιών σε εξωτερικό περιβάλλον Tom Adam Frederic Anderson, Yean-Fu Wen. An Approach to Learning Research with a Wireless Sensor Network in an Outdoor Setting. CoRR abs/0805.0560 (2008). http://arxiv.org/ftp/arxiv/papers/0805/0805.0560.pdf Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 26

Ασύρματα δίκτυα τύπου ad hoc Ευρεία ανάπτυξη λόγω ποικίλων εφαρμογών Έλλειψη ενσύρματης δικτυακής υποδομής Ασύρματη επικοινωνία μεταξύ κόμβων Χρήση αμφικατευθυνόμενων κεραιών Επικοινωνία μέσω ανάθεσης (περιορισμένης) ισχύος μετάδοσης σε κάθε κόμβο Χαρακτηριστικά Περιορισμένη διάρκεια ζωής κόμβων/δικτύου Περιορισμένες υπολογιστικές δυνατότητες Τα ασύρματα δίκτυα ad hoc έχουν το χαρακτηριστικό ότι δε διαθέτουν ενσύρματη υποδομή. Το δίκτυο φτιάχνεται από κόμβους – ασύρματες συσκευές που λειτουργούν πχ με μπαταρίες, δηλ με περιορισμένη ενέργεια και μπορούν να στέλνουν και να λαμβάνουν μηνύματα μέσω αμφικατευθυνόμενων κεραιών Η ύπαρξη και η λειτουργία των δικτύων αυτών σχετίζεται άμεσα με το πόσο θα κρατήσει η ενέργεια των κόμβων Αυτό τα κάνει ενδιαφέροντα λόγω πολλών εφαρμογών που έχουν (τα χρησιμοποιούμε όπου δε μπορούμε να έχουμε καλώδια και για συλλογή και επεξεργασία δεδομένων και αρκούν κόμβοι με μπαταρίες) Από την άλλη πλευρά το θέμα της αποδοτικής διαχείρισης της ενέργειας που υπάρχει στο δίκτυο είναι δύσκολο και επομένως ενδιαφέρον Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 27

Μοντέλο ασύρματης επικοινωνίας Κάθε κόμβος εκπέμπει χρησιμοποιώντας μια (περιορισμένη) ισχύ μετάδοσης Η ισχύς του σήματος μειώνεται σύμφωνα με τη σχέση 1/ra P  γ d(s,t)a P: ισχύς του εκπομπού γ: κατώφλι του παραλήπτη για να μπορεί να ανιχνεύσει το σήμα (γ=1) a: σταθερά που εξαρτάται από το περιβάλλον Πώς επικοινωνούν οι κόμβοι σε δίκτυα ad hoc? Είπαμε ότι διαθέτουν περιορισμένη ενέργεια. Η ισχύς του σήματος που εκπέμπει ένας κόμβος μειώνεται όσο απομακρυνόμαστε από αυτόν και συγκεκριμένα με βάση τον τύπο 1/r^α r είναι η ακτίνα εκπομπής και α μια σταθερά που εξαρτάται από το περιβάλλον και παίρνει τιμές από 1 έως 6 Για να επικοινωνήσουν 2 κόμβοι s και t ο πομπός πρέπει να εκπέμπει με ισχύ μεγαλύτερη από την ποσότητα γ επί την απόστασή τους υψωμένη στη σταθερά α – γ είναι το κατώφλι του παραλήπτη για να μπορεί να «πιάσει» το σήμα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 28

Επικοινωνία Απαιτούμενη ισχύς ανάλογη του rα 29 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 29

Επικοινωνία Απαιτούμενη ισχύς ανάλογη του rα 30 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 30

Επικοινωνία Απαιτούμενη ισχύς ανάλογη του rα 31 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 31

Σχήματα επικοινωνίας Ένας-σε-όλους (broadcasting) Όλοι-σε-όλους (gossiping) Συνηθισμένα κι ενδιαφέροντα σχήματα επικοινωνίας είναι: Να στέλνει ένας σε όλους Ένας σε πολλούς (Multicasting) – αυτό κάνουμε εμείς Όλοι σε όλους και ομάδες κόμβων μεταξύ τους Ένας-σε-πολλούς (multicasting) Ομαδική επικοινωνία (group communication) Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 32

Μοντέλο ad hoc δικτύων G = (V,E): πλήρες κατευθυνόμενο γράφημα c : E  R+ συνάρτηση κόστους στις ακμές Συνήθως συμμετρική: c(u,v) = c(v,u) c(u,v): υποδηλώνει απαιτούμενη ενέργεια για την επικοινωνία από την κορυφή u στην κορυφή v Πώς μοντελοποιούμε ένα ad hoc δίκτυο? Μέσω ενός κατευθυνόμενου γραφήματος Χρησιμοποιώντας μια συνάρτηση ανάθεσης κόστους στις ακμές – το κόστος σημαίνει πόση ενέργεια χρειάζεται για να «μιλήσουν» οι κόμβοι στα άκρα μιας ακμής Συνήθως η συνάρτηση αυτή είναι συμμετρική, δηλ όσο κοστίζει να μιλήσει ο κόμβος Α με το Β στοιχίζει και το αντίστροφο. Δείτε το σχήμα: έχουμε ένα laptop ένα κινητό τηλέφωνο και ένα pc. Καθένα από αυτά αντιστοιχεί σε ένα μαύρο κόμβο – υπάρχουν ακμές και προς τις δύο κατευθύνσεις μεταξύ των κόμβων και το κόστος πχ c3 σημαίνει πόση ενέργεια πρέπει να δαπανηθεί για να «μιλάνε» laptop και κινητό c1 c’1 c3 c2 c’3 c’2 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 33

Γράφημα μετάδοσης w: VR+ ανάθεση βαρών στις κορυφές Gw(VwEw): κατευθυνόμενο γράφημα Ew = { (u,v)  E και c(u,v)  w(u)} Το γράφημα μετάδοσης προκύπτει αν δώσουμε «βάρη» δηλ ενέργεια στους κόμβους και βάλουμε ακμές προς όσους κόμβους μπορεί να πιάσει κάποιος με την ενέργεια που έχει. Και είναι ένα κατευθυνόμενο γράφημα. Πχ αυτός με την ενέργεια 6 λόγω γεωμετρίας μπορεί να φτάσει κόμβους σε απόσταση το πολύ 5 από αυτόν, δηλ τον 9 Ο 9 τους φτάνει όλους ενώ πχ ο 4 δε φτάνει κανέναν… Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 34

Προβλήματα ελαχιστοποίησης ενέργειας Δεδομένα G = (V,E): πλήρες κατευθυνόμενο γράφημα c: E  R+ συνάρτηση κόστους στις ακμές Ζητούμενο w: V  R+ ανάθεση βαρών στις κορυφές έτσι ώστε: Το γράφημα μετάδοσης Gw να διατηρεί μια ιδιότητα συνεκτικότητας και το συνολικό βάρος να γίνεται ελάχιστο Στα προβλήματα ελαχιστοποίησης ενέργειας δίνεται ένα κατευθυνόμενο γράφημα και κόστη στις ακμές και εμείς πρέπει να φτιάξουμε ένα γράφημα μετάδοσης (δηλ να δώσουμε βάρη στους κόμβους) ώστε να διατηρείται κάποια ιδιότητα συνεκτικότητας και να ελαχιστοποιείται το συνολικό βάρος (δηλ η συνολική ενέργεια) 35 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 35

Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για κάθε γράφημα G με n κορυφές έχει n-1 ακμές G Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 36

Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για κάθε γράφημα G με n κορυφές έχει n-1 ακμές G Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 37

Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για κάθε γράφημα G με n κορυφές έχει n-1 ακμές G X Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 38

Ελάχιστο γεννητικό δέντρο (Minimum Spanning Tree) έχει ελάχιστο βάρος Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 39

Ελάχιστο γεννητικό δέντρο (Minimum Spanning Tree) έχει ελάχιστο βάρος Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 40

Ελάχιστο γεννητικό δέντρο (Minimum Spanning Tree) έχει ελάχιστο βάρος Για να βρούμε το MST πρέπει να βρούμε κάθε πιθανό ST και να διαλέξουμε αυτό με το μικρότερο βάρος…???  Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 41

Το πρόβλημα εύρεσης ελάχιστου γεννητικού δένδρου MST: Minimum Spanning Tree Δεδομένα: Συνεκτικό, μη κατευθυνόμενο γράφημα, με βάρη στις ακμές Ζητούμενο: Υπογράφημα χωρίς κύκλους (δηλ., δέντρο) που συνδέει όλες τις κορυφές (= γεννητικό) και έχει ελάχιστο βάρος Βάρος υπογραφήματος = άθροισμα βαρών των ακμών του Ένα γράφημα μπορεί να έχει πολλά γεννητικά δέντρα που το καθένα έχει διαφορετικό βάρος Ένα ελάχιστο γεννητικό δέντρο ενός γραφήματος έχει μικρότερο βάρος από κάθε άλλο γεννητικό δέντρο για το γράφημα αυτό Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 42

Το πρόβλημα εύρεσης ελάχιστου γεννητικού δένδρου Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 43

Το πρόβλημα εύρεσης ελάχιστου γεννητικού δένδρου Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 44

Αλγόριθμοι εύρεσης MST: πρακτικό ενδιαφέρον Σενάριο 1: Οι κορυφές αντιστοιχούν σε περιοχές σε αρχαιολογικό χώρο και τα βάρη σε αποστάσεις… Ζητούμενο: να περάσουν οι επισκέπτες από όλες τις περιοχές περπατώντας όσο το δυνατόν λιγότερο… Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 45

Αλγόριθμοι εύρεσης MST: πρακτικό ενδιαφέρον Σενάριο 2: Οι κορυφές αντιστοιχούν σε αισθητήρες που συλλέγουν πληροφορίες σε κάποιο χώρο και τα βάρη στην ακτίνα εκπομπής τους… Ζητούμενο: να κρατήσω ενεργοποιημένους κάποιους από τους αισθητήρες ώστε να υπάρχει συνεκτικότητα στο WSN και να ελαχιστοποιείται η συνολική ενέργεια που καταναλώνεται… Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 46

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές https://www.youtube.com/watch?v=2AaSMlq5TtU https://www.youtube.com/watch?v=calj1S6UFn4 https://www.youtube.com/watch?v=pIkWno7_kLQ https://www.youtube.com/watch?v=xT5o1QCeWS8 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 47

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 EC=4 AC=4 BC=5 AB=6 BE=6 DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 48

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 AC=4 BC=5 AB=6 BE=6 DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 49

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 (2) AC=4 BC=5 AB=6 BE=6 DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 50

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 (2) AC=4 (κύκλος) BC=5 AB=6 BE=6 DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 51

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 (2) AC=4 (κύκλος) BC=5 (3) AB=6 BE=6 DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 52

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 (2) AC=4 (κύκλος) BC=5 (3) AB=6 (κύκλος) BE=6 (κύκλος) DE=7 AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 53

O αλγόριθμος του Kruskal Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάταξε όλες τις ακμές σε αύξουσα σειρά ως προς το βάρος τους Βήμα 2: Διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν περισσότερες από μία, διάλεξε τυχαία) Βήμα 3: Από τις ακμές που μένουν, διάλεξε αυτή με τα μικρότερο βάρος που δε σχηματίζει κύκλο και πρόσθεσέ την στο T Βήμα 4: Επανάλαβε το Βήμα 3 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές ΑΕ=2 (1) EC=4 (2) AC=4 (κύκλος) BC=5 (3) AB=6 (κύκλος) BE=6 (κύκλος) DE=7 (4) AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 54

O αλγόριθμος του Kruskal Ο αλγόριθμος τερματίζει αφού: Έχουμε ST με n-1 (=5-1=4) ακμές, ή εναλλακτικά, Έχουμε ST που περιέχει όλες τις κορυφές του δοσμένου γραφήματος Παρατηρήστε ότι καμία από τις AD, BD, CD δε μπορεί έτσι κι αλλιώς να προστεθεί στο ST γιατί θα δημιουργούσε κύκλο… Το MST που βρήκε περιέχει τις ακμές: ΑΕ (2), ΕC (4), BC (5), DE (=7) και έχει συνολικό βάρος 2+4+5+7=18 ΑΕ=2 (1) EC=4 (2) AC=4 (κύκλος) BC=5 (3) AB=6 (κύκλος) BE=6 (κύκλος) DE=7 (4) AD=8 BD=8 CD=9 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 55

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 56

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 57

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 58

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 59

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 60

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 61

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 62

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 63

O αλγόριθμος του Prim Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Δες ποιες ακμές από κορυφές στο T συνδέονται με κορυφές εκτός του Τ και διάλεξε την ακμή με το μικρότερο βάρος να ανήκει στο Τ (αν υπάρχουν παραπάνω από μία, διάλεξε τυχαία) Βήμα 3: Επανάλαβε το Βήμα 2 μέχρι να υπάρχουν n-1 ακμές στο Τ δηλ., μέχρι να συνδεθούν όλες οι κορυφές MST: AE EC BC ED 2 4 5 7 Συνολικό βάρος: 18 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 64

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 65

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 66

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 67

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 68

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 69

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 70

O αλγόριθμος του Prim – με πίνακα Βρίσκει το ελάχιστο γεννητικό δέντρο (MST) Τ σε δοσμένο γράφημα Βήμα 1: Διάλεξε αυθαίρετη κορυφή να είναι η πρώτη στο δέντρο T Βήμα 2: Αρίθμησε τη στήλη της νέας κορυφής στην κορυφαία γραμμή. Διάγραψε τη γραμμή του πίνακα που αντιστοιχεί στη νέα κορυφή Βήμα 3: Βρες το μικρότερο βάρος σε μη διαγραμμένες θέσεις σε στήλες που αντιστοιχούν σε κορυφές του Τ και κύκλωσέ το (αν υπάρχουν παραπάνω από ένα διάλεξε τυχαία). Η κυκλωμένη κορυφή είναι η επόμενη κορυφή του Τ Βήμα 4: Επανάλαβε τα Βήματα 2 και 3 μέχρι να διαγραφούν όλες οι γραμμές του πίνακα ΑΕ 2 ΕC 4 ΒC 5 DΕ 7 ______ MST 18 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 71

Το πρόβλημα εύρεσης ελάχιστου γεννητικού δένδρου: ο αλγόριθμος του Kruskal Άπληστος αλγόριθμος που βρίσκει ένα ελάχιστο γεννητικό δέντρο (MST) σε δοσμένο συνεκτικό γράφημα με βάρη Βρίσκει σύνολο από ακμές που σχηματίζουν δέντρο που περιέχει όλες τις κορυφές του γραφήματος και έχει ελάχιστο συνολικό βάρος Ο αλγόριθμος προτάθηκε από τον Joseph Kruskal εμφανίστηκε στα Πρακτικά του American Mathematical Society, σελ. 48–50 το 1956 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 72

Το πρόβλημα εύρεσης ελάχιστου γεννητικού δένδρου: ο αλγόριθμος του Prim Άπληστος αλγόριθμος που βρίσκει ένα ελάχιστο γεννητικό δέντρο (MST) σε δοσμένο συνεκτικό γράφημα με βάρη Βρίσκει σύνολο από ακμές που σχηματίζουν δέντρο που περιέχει όλες τις κορυφές του γραφήματος και έχει ελάχιστο συνολικό βάρος Ο αλγόριθμος προτάθηκε από τον Τσέχο μαθηματικό Vojtěch Jarník το 1930 και αργότερα – ανεξάρτητα - από τον επιστήμονα υπολογιστών Robert C. Prim το 1957 και ανακαλύφθηκε εκ νέου από τον Edsger Dijkstra το 1959 V. Jarník: O jistém problému minimálním [About a certain minimal problem], Práce Moravské Přírodovědecké Společnosti, 6, 1930, pp. 57–63. R. C. Prim: Shortest connection networks and some generalizations. In: Bell System Technical Journal, 36 (1957), pp. 1389–1401 Ενότητα 5: Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα 73

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00. Έχουν προηγηθεί οι κάτωθι εκδόσεις:

Σημείωμα Αναφοράς Copyright Πανεπιτήμιο Πατρών, Εύη Παπαϊωάννου. «Ειδικά θέματα σε κινητά και ασύρματα δίκτυα. Αλγόριθμοι ελαχιστοποίησης κατανάλωσης ενέργειας σε ασύρματα αδόμητα δίκτυα.». Έκδοση: 1.0. Πάτρα 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: https://eclass.upatras.gr/courses/CULTURE160/index.php

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] http://creativecommons.org/licenses/by-nc-sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες http://www.wikipedia.org