ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ Ενότητα 4: Ισοστασία της Γης: Ιστορική ανασκόπηση, Υποθέσεις.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΙΣΟΣΤΑΣΙΑ ΜΑΘΗΜΑ 4Ο Κοντοπούλου Δέσποινα Παπαζάχος/Κων/νος
Advertisements

Πηγές τάσης/ρεύματος R , L, C
Τέλος Ενότητας.
Καμπυλότητα Φακού P c
Χρηματοοικονομική των Επιχειρήσεων, Ενότητα : Βέλτιστη Κεφαλαιακή Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ – Ανοικτά Ακαδημαϊκά Μαθήματα.
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων
1 Γεωργική Χημεία Ενότητα 10: Νόμος απορρόφησης φωτός Lambert- Beer Γεώργιος Παπαδόπουλος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 5 : Προστασία αγωγών από.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ Εργαστήριο 5: Μαγνητικό πεδίο της Γης Κοντοπούλου Δέσποινα Καθηγήτρια.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ Εργαστήριο 4: Μαγνητικό πεδίο της Γης Κοντοπούλου Δέσποινα Καθηγήτρια.
Τεκμηριωμένη Λήψη Κλινικής Απόφασης Ενότητα 5: Στρατηγική Αναζήτησης Δεδομένων σε Ηλεκτρονικές Βάσεις Δεδομένων- Εργαστηριακή Άσκηση Κλαίρη Γουρουντή,
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Ενότητα 1: Αγορά Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός.
1 Βιομετρία - Γεωργικός Πειραματισμός Ενότητα 12 : Κανονική κατανομή Γεράσιμος Μελετίου Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου.
1 Ενοποιημένες Χρηματοοικονομικές Καταστάσεις Δομή ομίλου Εταιρειών και προσδιορισμός του ποσοστού συμμετοχής Δρ. Χύτης Ευάγγελος Ελληνική Δημοκρατία Τεχνολογικό.
Ασυνέχειες: Μηχανική περιγραφή ΙI Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλίας Αρδευτική Μηχανική Εργαστήριο 3: Τεχνολογία Διανεμητών Μικροάρδευσης Καθηγητής Παναγιώτης Βύρλας Σχολή Τεχνολόγων.
Ενότητα 6: Η Μέθοδος των Ελαχίστων Τετραγώνων. Καθηγήτρια Γεωργά Σταυρούλα Τμήμα Φυσικής ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ.
Εκτυπωτικά Υποστρώματα (Ε) Ενότητα 8: Μέτρηση της μεταβολής των διαστάσεων του χαρτιού μετά από βύθιση σε νερό Βασιλική Μπέλεση Επίκ. Καθηγήτρια Τμήμα.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 1 : Εκπόνηση μελέτης Ευαγγελίδης.
1 Οικονοµική Εργασίας και Εργασιακές Σχέσεις Εργατικά Σωματεία Καραµάνης Κώστας Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου.
Τεχνολογία οφθαλμικών φακών Ι (Ε) Ενότητα 5: Έγχρωμοι φακοί Θεμιστοκλής Γιαλελής, Οπτικός, MSc, PhD candidate ΕΔΙΠ του τμήματος Οπτικής και Οπτομετρίας.
Εισαγωγή στη λογιστική, Ενότητα :Προσδιοριστικοί παράγοντες του λογιστικού αποτελέσματος, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ – Ανοικτά.
Εισαγωγή στη λογιστική, Ενότητα :Μεταβολές της οικονομικής κατάστασης, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ – Ανοικτά Ακαδημαϊκά Μαθήματα.
Εργαστήριο 9 : Scratch (Μέρος 9_Α) Δημήτριος Νικολός ΤΕΕΑΠΗ
ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΕΛΕΓΧΟΥ ΤΗΣ ΡΥΠΑΝΣΗΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Άλλες μορφές νευρώσεων
Επικοινωνιακός Προγραμματισμός Ι
Άσκηση 8 (1 από 3) Προβολές 1. Να επιλέξετε ένα θέμα βασισμένο σε κάποια παράγραφο / υποπαράγραφο του κεφαλαίου 6 των σημειώσεων και να κάνετε μια εργασία.
Υπολογιστική Γεωμετρία και Εφαρμογές στις ΒΧΔ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΛΟΓΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ
Ενότητα 10: Καμπύλες κόστους
Γεωργική Χημεία Ενότητα 2 : Περιοδικός πίνακας στοιχείων, ιδιότητες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
ΠΡΟΤΥΠΟ ΕΛΟΤ EN ISO 3251 Ζύγιση μάζας υγρού μελανιού (m1 g)
Ενότητα 13 Αξιολόγηση μαθήματος και διδάσκοντος από την εφαρμογή της Μονάδας Ολικής Ποιότητας (ΜΟΔΙΠ) του ΤΕΙ Αθήνας Αξιολόγηση του μαθήματος Αξιολόγηση.
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Άσκηση 9 (1 από 2) Ανακαλύψτε στο χάρτη σας μερικά χαρτογραφικά αντικείμενα που να ανήκουν στις παρακάτω κατηγορίες : φυσικά, τεχνητές κατασκευές, αφηρημένα.
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
ΠΕΤΡΟΛΟΓΙΑ ΜΑΓΜΑΤΙΚΩΝ & ΜΕΤΑΜΟΡΦΩΜΕΝΩΝ ΠΕΤΡΩΜΑΤΩΝ
Εργαστήριο 7 : Scratch (Μέρος 7ο) Δημήτριος Νικολός ΤΕΕΑΠΗ
Τοπολογικές σχέσεις 1/3 Βρείτε και περιγράψτε τις τοπολογικές σχέσεις σύμφωνα με τους (Pantazis, Donnay 1996) για τα παρακάτω γεω-γραφικά αντικείμενα:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Επικοινωνιακός Προγραμματισμός Ι
Εικαστικές συνθέσεις - Χρώμα στο χώρο
Γενική και Μαθηματική Χαρτογραφία (Ε)
Ενότητα 2: Εισοδηματικός περιορισμός
Λιθογραφία – Όφσετ (Θ) Ενότητα 8.2: Εκτυπωτική Διαδικασία Μηχανής
Επικοινωνιακός Προγραμματισμός Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Τηλεοπτική και Ραδιοφωνική Παραγωγή
Γεωργική Χημεία Ενότητα 1 : Γενικές αρχές χημείας, άτομα και μόρια
Γεωργική Χημεία Ενότητα 6: Οξέα, βάσεις, pH, γινόμενο διαλυτότητας
Αισθητική Σώματος Ι (Ε)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ειδικά θέματα βάσεων χωρικών δεδομένων και θεωρία συστημάτων -E
Γενική και Μαθηματική Χαρτογραφία (Ε)
Μυθος και Τελετουργία στην Αρχαία Ελλάδα
Ενότητα 8: Συστήματα Υγείας στην Ευρώπη: Γαλλία
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Γενικὴ Ἐκκλησιαστικὴ Ἱστορία Α´
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ενότητα 1: ……………….. Όνομα Επώνυμο Τμήμα __
Υπόθεση Airy Ο γήινος φλοιός αποτελείται από τμήματα της ίδιας πυκνότητας που επιπλέουν μέσα στο πυκνότερο υλικό του μανδύα, δηλαδή, βρίσκονται σε υδροστατική.
Ηλεκτροτεχνία Εργαστήριο Ι
Επικοινωνιακός Προγραμματισμός Ι
Μεταγράφημα παρουσίασης:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ Ενότητα 4: Ισοστασία της Γης: Ιστορική ανασκόπηση, Υποθέσεις Airy και Pratt, Ισοστατικά συστήματα, Ισοστατική ανωμαλία, Αληθινός μηχανισμός αντιστάθμισης, Χρήση ισοστατικών ανωμαλιών, Έλλειψη ισοστατικής αντιστάθμισης Κοντοπούλου Δέσποινα Καθηγήτρια Φυσική Εσωτερικού της Γης, Τομέας Γεωφυσικής Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Άδειες Χρήσης 2

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Χρηματοδότηση 3

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Πολλά από τα σχήματα και όλες οι ασκήσεις στην παρουσίαση αυτή προέρχονται από το βιβλίο «Εισαγωγή στη Γεωφυσική» των Hugh Young των Παπαζάχος και Παπαζάχος (2008) Εκδόσεων Ζήτη (Β’ Έκδοση), οι οποίες μας επέτρεψαν τη χρήση των σχετικών σχημάτων και ασκήσεων. Ενημέρωση 4

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Από το 1735 μέχρι το 1745 ο Bouguer και οι συνεργάτες του έκαναν μετρήσεις στο Περού για να καθορίσουν το σχήμα της Γης. Η εκτροπή του νήματος της στάθμης στις ‘Ανδεις ήταν πολύ μικρότερη. Το ίδιο βρήκε στις αρχές του 19 ου ο Sir Everest στα Ιμαλάια. 1855: Pratt και Airy προτείνουν 2 διαφορετικά μοντέλα. 1889: Χρησιμοποιείται ο όρος ισοστασία. Το έλλειμμα μάζας κάτω από τα βουνά βρέθηκε σχεδόν ίσο με τη μάζα των βουνών υδροστατική ισορροπία Η ιστορία της ισοστασίας….

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ο Airy (1855) και ο Pratt (1855) ήταν από τους πρώτους που προσπάθησαν να δώσουν φυσική ερμηνεία στις παρατηρήσεις που αναφέρθηκαν παραπάνω, χρησιμοποιώντας δυο διαφορετικές υποθέσεις για τη δομή του φλοιού και της λιθόσφαιρας, οι οποίες φέρουν τα ονόματά τους. Sir George Biddell Airy was a British astronomer ( ) Θεωρίες για την ισοστασία

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Γιατί ισοστασία; Οι ήπειροι θα έπρεπε να έχουν τεράστιο πλεόνασμα μάζας σε σχέση με τους ωκεανούς. Δεν ισχύει όμως αυτό, αφού το γεωειδές δεν δείχνει κάποιο πλεόνασμα βαρύτητας (Ν>0) πάνω από τις ηπείρους Συστηματικό έλλειμα μάζας κάτω από τις ηπείρους και πλεόνασμα μάζας στους ωκεανούς! (Pavlis, et al., 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Η αρχή της ισοστασίας  Κάτω από κάθε τόπο υψομέτρου h υπάρχει ένα ελάχιστο βάθος, D+h στο οποίο η υδροστατική πίεση είναι σταθερή, ανεξάρτητα αν ο τόπος βρίσκεται σε ορεινή περιοχή, σε πεδιάδα ή σε θάλασσα. Το D (βάθος ισοστάθμισης) είναι τουλάχιστον ίσο με το μεγαλύτερο πάχος του φλοιού. h DD (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Η αρχή της ισοστασίας  Η ισοδύναμη υδροστατική πίεση που ασκεί ο φλοιός σε κάποιο βάθος D είναι σταθερή. ρ h A

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Κάτω από τα βουνά ο φλοιός, ο οποίος έχει πολύ μικρότερη πυκνότητα από το μανδύα, έχει μεγαλύτερο πάχος (Υπόθεση Airy) Κάτω από τα βουνά ο φλοιός έχει ακόμα μικρότερη πυκνότητα από το συνηθισμένο (Υπόθεση Pratt) Η τυπική στήλη του ηπειρωτικού φλοιού κάτω από τα βουνά, όπου η τοπογραφία υπερβαίνει σημαντικά το επίπεδο της θάλασσας, λόγω μεγαλύτερου πάχους ή λόγω μικρότερης πυκνότητας, έχει την ίδια μάζα με ένα τμήμα ωκεάνιου φλοιού, το οποίο έχει πολύ μικρότερο πάχος αλλά μεγαλύτερη πυκνότητα, ώστε το βαρυτικό αποτέλεσμα στην επιφάνεια να είναι πρακτικά το ίδιο. Η αρχή της ισοστασίας (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Συνέπεια της ισχύος της θεωρίας της ισοστασίας Το «πλεόνασμα μάζας» ενός βουνού, που οφείλεται στο υλικό αυτού που βρίσκεται πάνω από την επιφάνεια της θάλασσας, αντισταθμίζεται από το «έλλειμμα μάζας» της κατακόρυφης προέκτασης αυτού κάτω από την στάθμη της θάλασσας ενώ το «έλλειμμα μάζας» πάνω από τη θάλασσα αντισταθμίζεται από το «πλεόνασμα μάζας» κάτω απ’ αυτή. Για το λόγο αυτό, η θεωρία της ισοστασίας λέγεται και θεωρία της βαρυτικής αντιστάθμισης. h DD Ισοστασία (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ο γήινος φλοιός αποτελείται από τμήματα της ίδιας πυκνότητας που επιπλέουν μέσα στο πυκνότερο υλικό του μανδύα, δηλαδή, βρίσκονται σε υδροστατική ισορροπία. Γι’ αυτό, τα τμήματα κάτω από τα βουνά βυθίζονται μέσα στο μανδύα βαθύτερα απ’ ότι τα τμήματα κάτω από τις θάλασσες. Στις πεδινές περιοχές, όπου το υψόμετρο είναι ίσο με μηδέν, ο φλοιός βυθίζεται μέσα στο μανδύα μέχρι ορισμένο βάθος. Σε ορεινές περιοχές ο φλοιός βυθίζεται βαθύτερα για να αντισταθμίζει τα βουνά ενώ στις θάλασσες ο φλοιός βυθίζεται λιγότερο. (6.64) Γενικευμένη υπόθεση Airy (6.63) ρ m πυκνότητα του μανδύα d m πάχος του μανδύα ρ c πυκνότητα του φλοιού d c πάχος του φλοιού Υπόθεση Airy

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Η υπόθεση του Airy λέγεται και υπόθεση των ειδώλων, γιατί σε κάθε τμήμα του φλοιού, που βρίσκεται πάνω από το οριζόντιο επίπεδο μηδενικού υψομέτρου, υπάρχει το «είδωλό» του κάτω από το οριζόντιο επίπεδο που περνάει από τον πυθμένα του φλοιού σε περιοχές ξηράς μηδενικού υψόμετρου. Το φαινόμενο αυτό είναι αντίστοιχο με τη βύθιση των παγόβουνων, τα οποία έχουν τόσο μεγαλύτερη «ρίζα» κάτω από το πυκνότερο νερό όσο μεγαλύτερο είναι το ύψος τους έξω από το νερό. Υπόθεση Airy

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ο φλοιός αποτελείται από κατακόρυφες στήλες, των οποίων οι πυθμένες τους βρίσκονται στο ίδιο βάθος και η πυκνότητα μέσα σε κάθε μια απ’ αυτές είναι σταθερή Το βάθος στο οποίο εδράζονται οι πυθμένες των στηλών του φλοιού είναι το βάθος ισοστάθμισης, όμως οι πυκνότητες διαφέρουν από στήλη σε στήλη. Μανδύας ρ m Επειδή τα τμήματα (στήλες) βρίσκονται σε υδροστατική ισορροπία, τα ψηλότερα από αυτά, δηλαδή τα τμήματα των βουνών, έχουν πυκνότητα μικρότερη από τα τμήματα των ωκεανών. Υπόθεση Pratt

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ονομάζουμε ισοστατικό αποτέλεσμα ή ισοστατική διόρθωση, Δg i, την ένταση του πεδίου βαρύτητας η οποία οφείλεται στη μεταβολή της πυκνότητας του υλικού κάτω από την επιφάνεια του γεωειδούς και που προβλέπεται από τη θεωρία της ισοστασίας για αντιστάθμιση του αποτελέσματος της επιφανειακής μορφολογίας. Τα σημαντικότερα συστήματα αντιστάθμισης είναι το σύστημα Pratt-Hayford και το σύστημα Airy-Heiskanen. Συνήθως, το σύστημα Airy-Heiskanen δίνει περισσότερο ικανοποιητικά αποτελέσματα από το σύστημα Pratt-Hayford. Αυτό, αποτελεί ένα από τα στοιχεία που συνηγορούν υπέρ της άποψης ότι η υπόθεση Airy βρίσκεται πλησιέστερα προς την πραγματικότητα. Ισοστατικό Αποτέλεσμα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Αν η περιοχή που εξετάζουμε είναι κάτω από το επίπεδο της θάλασσας σε βάθος h΄  ρ w είναι η πυκνότητα του θαλασσινού νερού hDhD  ρ k είναι η πυκνότητα ορισμένης στήλης (υψόμετρο ίσο με αυτό του επιπέδου της θάλασσας).  ρ είναι η πυκνότητα της αντίστοιχης στήλης  φλοιού (όπου το υψόμετρο είναι h).  Δρ είναι η διαφορά πυκνότητας ρ-ρ k Στο σύστημα αυτό, το βάθος ισοστάθμισης, D, θεωρείται παντού το ίδιο, σε συμφωνία με την υπόθεση Pratt. Ισοστατικό σύστημα Pratt-Hayford (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ισοστατικό σύστημα Pratt-Hayford 17 D. ρ k = (D+h). ρ = C (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Στο σύστημα αυτό η αντιστάθμιση είναι τοπική, δηλαδή, το αντισταθμιζόμενο στρώμα βρίσκεται αμέσως κάτω από τον τόπο παρατήρησης και η πυκνότητα του φλοιού είναι παντού η ίδια. Αν h είναι το υψόμετρο σε μια ηπειρωτική περιοχή και t η «ρίζα» του φλοιού, το ολικό πάχος, Τ c, του φλοιού δίνεται από τη σχέση: Το πάχος του ωκεάνιου φλοιού Τ ο  h΄ είναι το πάχος του νερού  t΄ το πάχος της αντιρρίζας Ισοστατικό σύστημα Airy-Heiskanen (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Το πάχος της ρίζας, t του φλοιού δίνεται από τη σχέση:  Δ ρ =ρ m –ρ c η διαφορά μεταξύ της πυκνότητας του μανδύα, ρ m, και της πυκνότητας, ρ c του φλοιού  h το υψόμετρο (6.71) Το πάχος, t΄, της αντιρρίζας δίνεται από τη σχέση: ρ w είναι η πυκνότητα του θαλασσινού νερού (6.72) Ισοστατικό σύστημα Airy-Heiskanen (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας 20 Υπολογισμός πάχους ρίζας Υπολογισμός πάχους αντιρρίζας Ισοστατικό σύστημα Airy-Heiskanen (Παπαζάχος & Παπαζάχος, 2008)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Αληθινός μηχανισμός βαρυτικής αντιστάθμισης 21 Οι υποθέσεις Airy και Pratt ικανοποιούν σε πρώτη προσέγγιση τη θεωρία της ισοστασίας, ο ακριβής όμως μηχανισμός αντιστάθμισης δεν είναι γνωστός. Τα σεισμικά δεδομένα έδειξαν την ύπαρξη ριζών κάτω από τις ηπείρους και αντιρριζών κάτω από τους ωκεανούς, δηλαδή επιβεβαιώναν γενικά την υπόθεση Airy.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας 22 Woolard, (1962)  O Heiskanen μετά από λεπτομερή μελέτη της δομής της Γης με βάση σεισμικά μοντέλα, έδειξε ότι ισχύει κατά ~2/3 η θεωρία του Airy και κατά ~1/3 η θεωρία του Pratt. Αληθινός μηχανισμός βαρυτικής αντιστάθμισης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Η διαφορά της τιμής, γ ο, της έντασης στην επιφάνεια του σφαιροειδούς από την τιμή g i, αυτής στην επιφάνεια του γεωειδούς λέγεται ισοστατική ανωμαλία. Από τα παραπάνω προκύπτει ότι: (6.74) Οι ισοστατικές ανωμαλίες στις ανατολικές Άλπεις (β-20km, γ-40km) είναι μικρότερες των ανωμαλιών Bouguer (ε) και των ανωμαλιών ελεύθερου αέρα (δ) Το γεγονός ότι οι ισοστατικές ανωμαλίες είναι μικρές και μεταβάλλονται γύρω από το μηδέν δείχνει ότι ισχύει (κατά προσέγγιση) η θεωρία της ισοστασίας (μοντέλο Airy-Heiskanen). (Παπαζάχος & Παπαζάχος 2008,τροποποιημένο από Holopainen,1947) Ισοστατική Ανωμαλία

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ο ακριβής μηχανισμός της βαρυτικής αντιστάθμισης δεν είναι γνωστός. Οι υποθέσεις Airy και Pratt αποτελούν ακραία μοντέλα ενός συνόλου πιθανών μοντέλων βαρυτικής αντιστάθμισης. Από τη σύγκριση, αποτελεσμάτων που προκύπτουν από μετρήσεις του πεδίου βαρύτητας της Γης, με αποτελέσματα που βασίζονται σεισμικές παρατηρήσεις, μπορούμε να βγάλουμε ορισμένα συμπεράσματα για τον πραγματικό μηχανισμό της βαρυτικής αντιστάθμισης. Αναμένεται, ότι η ταχύτητα διάδοσης, α, των επιμηκών κυμάτων είναι ανάλογη του αντιστρόφου της τετραγωνικής ρίζας της πυκνότητας, όταν οι ελαστικές σταθερές μ και λ δεν μεταβάλλονται με την πυκνότητα. Επειδή, όμως, οι ελαστικές σταθερές μεταβάλλονται με την πυκνότητα, εργαστηριακές μετρήσεις της πυκνότητας και της ταχύτητας χρησιμοποιήθηκαν για την εύρεση σχέσεων μεταξύ αυτών, όπως είναι οι σχέσεις (2.3) και (2.4) και το διπλανό σχήμα. (2.3) (2.4) Ο Αληθινός Μηχανισμός Βαρυτικής Αντιστάθμισης (τροποποιημένο από Ludwig et al., 1970)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Από τις σχέσεις αυτές και από μετρήσεις της μέσης ταχύτητας, α, στο φλοιό και τον πάνω μανδύα προκύπτει ότι μπορούμε να δεχθούμε κατά προσέγγιση ρ c ~2800 Kgm -3 και ρ m ~3300 Kgm -3, οπότε από τη σχέση (6.71) προκύπτει ότι οι ρίζες του φλοιού πρέπει να είναι κατοπτρικές εικόνες της επιφάνειας της Γης μεγεθυσμένες κατά περίπου 5-6 φορές. (6.71) Η ύπαρξη ανάλογης αντιστοιχίας, όπως επιβεβαιώθηκε από ανεξάρτητες μετρήσεις δείχνει ότι, σε πρώτη προσέγγιση, ισχύει ο μηχανισμός αντιστάθμισης κατά Airy. Λεπτομερής, όμως, μελέτη της δομής της Γης σε διάφορες περιοχές αυτής, έδειξε ότι η υπόθεση Airy δεν μπορεί να ερμηνεύσει πλήρως τις παρατηρήσεις, αν δεν λάβουμε υπόψη την κατακόρυφη μεταβολή της ταχύτητας που παρατηρήθηκε στο φλοιό και τη μεταβολή της ταχύτητας στον πάνω μανδύα από τόπο σε τόπο. Αυτό σημαίνει ότι αν και ο μηχανισμός της γενικευμένης υπόθεσης του Airy, που προτάθηκε από τον Heiskanen, ερμηνεύει καλύτερα τις σεισμικές παρατηρήσεις, η υπόθεση του μηχανισμού αντιστάθμισης του Pratt εξακολουθεί να ισχύει μερικώς. Ο Αληθινός Μηχανισμός Βαρυτικής Αντιστάθμισης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Οι ανωμαλίες ελεύθερου αέρα παίρνουν γενικά υψηλές θετικές τιμές. Οι τιμές αυτές αντιστοιχούν στις ανωμαλίες που θα αναμένονταν αν οι μάζες που βρίσκονται πάνω από το γεωειδές θεωρηθούν συμπιεσμένες αμέσως κάτω από την επιφάνεια του γεωειδούς. οι ανωμαλίες ελεύθερου αέρα χρησιμοποιούνται για γεωδαιτικούς σκοπούς Οι ανωμαλίες Bouguer χρησιμοποιούνται για γεωφυσικούς, κυρίως, σκοπούς. λαμβάνουν αρνητικές τιμές σε ορεινές περιοχές και θετικές τιμές στους ωκεανούς, ως αποτέλεσμα της ισοστασίας. Υπάρχουν όμως περιοχές για τις οποίες δεν ισχύει ο γενικός αυτός κανόνας. Η ανωμαλία Bouguer είναι μηδενική στην ηπειρωτική περιοχή όταν δεν έχουμε μηχανισμό αντιστάθμισης, ενώ αντίθετα η ανωμαλία ελεύθερου αέρα μειώνεται στο κέντρο της ηπειρωτικής περιοχής στην περίπτωση τυπικού μηχανισμού αντιστάθμισης. Είναι προφανές ότι η συνδυασμένη μελέτη των ανωμαλιών ελεύθερου αέρα και Bouguer επιτρέπει τον καθορισμό του μοντέλου που ισχύει σε κάθε περιοχή. (Παπαζάχος & Παπαζάχος, 2008,τροποποιημένο από Bott,1982) Κατανομή των Ανωμαλιών Βαρύτητας στην Επιφάνεια της Γης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ισοστατική ανωμαλία και αντιστάθμιση 27 Οι βαρυτικές μετρήσεις μπορούν να καθορίσουν αν μία περιοχή βρίσκεται σε ισοστατική αντιστάθμιση. Αν ισχύει αυτό, η ισοστατική ανωμαλία πρέπει να είναι σχεδόν μηδενική. Αν η περιοχή δεν βρίσκεται σε ισοστατική ισορροπία η υπολογιζόμενη ανωμαλία είναι ~ Δg B =140mgal Βαθυμετρία και ανωμαλία ελεύθερου αέρα στα ηπειρωτικά περιθώρια της Μ. Βρετανίας (McKenzie, 2004) ρ W = 1 gr/cm 3 h=2kmρ c ~ 2.7gr/cm3

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ισοστατική ανωμαλία και αντιστάθμιση 28 Οι βαρυτικές μετρήσεις μπορούν να καθορίσουν αν μία περιοχή βρίσκεται σε ισοστατική αντιστάθμιση. Αν ισχύει αυτό, η ανωμαλία πρέπει να είναι σχεδόν μηδενική. Βαθυμετρία και ανωμαλία ελεύθερου αέρα κατά μήκος της ράχης του Ατλαντικού(McKenzie & Bowin,1976) Αν η περιοχή δεν βρίσκεται σε ισοστατική ισορροπία η υπολογιζόμενη ανωμαλία είναι ~ 200mgal

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Στις μεσωκεάνιες ράχες οι ανωμαλίες Bouguer έχουν αρνητικές τιμές λόγο έντονης παρουσίας μερικώς μεταμορφωμένων ιζηματογενών και βασαλτικών πετρωμάτων κοντά στη ράχη, μικρής σχετικά πυκνότητας σε σχέση με τον περιδοτιτικό μανδύα. Αρνητικές ανωμαλίες Bouguer παρατηρούνται και στις ηπειρωτικές λεκάνες, λόγω του μεγάλου πάχους των ιζημάτων μέσα σ’ αυτές, καθώς και σε περιοχές παλαιών ηπειρωτικών ασπίδων λόγω του ιδιαίτερα μεγάλου πάχους της ηπειρωτικής λιθόσφαιρας, η οποία παρουσιάζει χαμηλότερη πυκνότητα από τις αντίστοιχες ωκεάνιες λιθόσφαιρες. Συνδυαστική ερμηνεία βαρυτικών και σεισμικών δεδομένων στην περιοχή της Ατλαντικής μεσωκεάνιας ράχης κοντά στον βόρειο παράλληλο 32 o ( Παπαζάχος & Παπαζάχος 2008, τροποποιημένο από Talwani et al., 1965). Ισοστατική ανωμαλία και αντιστάθμιση

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Βαρυτικές ανωμαλίες στο Αιγαίο και ισοστασία (Παπαζάχος, 1994)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ανωμαλία Bouguer στο Αιγαίο (Makris, 1976, Chailas et al., 1992) Πάχη φλοιού στο Αιγαίο (Papazachos, 1993) Βαρυτικές ανωμαλίες στο Αιγαίο και ισοστασία

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Συνεισφορά από πάχος φλοιού Συνεισφορά από δομή φλοιού (Sokoutis et al., 1999) Ανωμαλία Bouguer στο Αιγαίο Βαρυτικές ανωμαλίες στο Αιγαίο και ισοστασία (Makris, 1976, Chailas et al., 1992) (Παπαζάχος, 1994)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Υπόθεση Ισοστασίας (συσχέτιση ανωμαλίας Bouguer με μορφολογία), ώστε να ξεπεραστεί το πρόβλημα της επίδρασης της βυθιζόμενης πλάκας Chailas et al. (1993) Χαρτογράφηση του βάθους της Moho από βαρυτικά δεδομένα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Παραδείγματα έλλειψης ισοστατικής ισορροπίας 34 Μεταπαγετώδης ανάπαλση Ανωμαλίες πυκνότητας στον μανδύα (Sierra Nevada, Hawaii)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Μεταπαγετώδης ισοστατική ανάπαλση 35 Η μεταπαγετώδης ανάπαλση χρησιμοποιείτε για τον καθορισμό της τιμής του ιξώδους της ασθενόσφαιρας. Αρνητικές ανωμαλίες βαρύτητας στον Β. Καναδά και Σκανδιναβία, περιοχές καλυμμένες από παγετώνες του Πλειστοκαίνου. O πάγος έλιωσε πριν χρ. Κάλυπτε 4χ10 6 Km 2 και είχε ~2.5 km πάχος (Ekman & Makinen, 1996)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Λόγω του βάρους του πάγου η ηπειρωτική λιθόσφαιρα βυθίστηκε μέσα στο μανδύα, ώστε να ισορροπήσει ισοστατικά, ακολουθώντας περίπου το μοντέλο του Airy (Α,Β). Μετά την απομάκρυνση του πάγου η ισοστατική ισορροπία ανατρέπεται αφού υπάρχει έλλειμμα βάρους (C), με αποτέλεσμα ο ελαφρύτερος φλοιός να πραγματοποιεί συνεχή ανύψωση στις περιοχές αυτές λόγω της υδροστατικής «άνωσης» του πυκνότερου μανδύα (D). Το φαινόμενο αυτό αποκαλείται μεταπαγετώδης ανάπαλση (postglacial rebound) Μεταπαγετώδης ισοστατική ανάπαλση

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Μεταπαγετώδης ανάπαλση στη ΝΔ Αλάσκα Μεταπαγετώδης ισοστατική ανάπαλση Larsen et al., 2005

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Ισοστατική (υδροστατική) ή Ελαστική απόκριση λιθόσφαιρας-μανδύα; 38 ρcρc ρcρc ρmρm ρmρm ρcρc ρcρc ρmρm ρmρm λ 1 Μεγάλα μήκη κύματος λ 2 Μικρά μήκη κύματος Δλ Μεγάλα μήκη κύματος Υδροστατική Απόκριση (Άνωση Μανδύα-Ισοστασία) ΔhΔhΔhΔh Μικρά μήκη κύματος

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Έλλειψη ισοστατικής αντιστάθμισης Ανωμαλίες πυκνότητας στον μανδύα 39 Zandt et al., (2004 )

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Έλλειψη ισοστατικής αντιστάθμισης Ανωμαλίες πυκνότητας στον μανδύα 40 Zandt et al. (2004)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας 41 Fliedner & Ruppert (1996) Έλλειψη ισοστατικής αντιστάθμισης Ανωμαλίες πυκνότητας στον μανδύα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Έλλειψη ισοστατικής αντιστάθμισης 42 Βαθυμετρία και ανωμαλία ελεύθερου αέρα κατά μήκος ενός Β-Ν άξονα με κέντρο το ηφαιστειακό νησί Oahu, στην Χαβάη. (Watts & Daly, 1981) Αν η περιοχή δεν βρίσκεται σε ισοστατική ισορροπία η υπολογιζόμενη ανωμαλία είναι ~ 300mgal

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Σημείωμα Αναφοράς Copyright Αριστοτέλειο Πανεπιστήμιο Θεσσαλονικης, Παπαζάχος Κωνσταντίνος. Κοντοπούλου Δέσποινα. «Εισαγωγή στη Γεωφυσική. Ισοστασία της Γης: Ιστορική ανασκόπηση, Υποθέσεις Airy και Pratt, Ισοστατικά συστήματα, Ισοστατική ανωμαλία, Αληθινός μηχανισμός αντιστάθμισης, Χρήση ισοστατικών ανωμαλιών, Έλλειψη ισοστατικής αντιστάθμισης». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] Σημείωμα Αδειοδότησης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Βεντούζη Χρυσάνθη Θεσσαλονίκη, Δεκέμβριος 2015

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στη Γεωφυσική Τμήμα Γεωλογίας Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει:  το Σημείωμα Αναφοράς  το Σημείωμα Αδειοδότησης  τη δήλωση Διατήρησης Σημειωμάτων  το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.