1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 7 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ Α’) 1. ΘΕΩΡΙΑ ΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Εκτός από τις τερματικές.
Advertisements

Διαδικασίες Markov, Εκθετική Κατανομή, Κατανομή Poisson
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης
Δίκτυα Ουρών - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1 Β. Μάγκλαρης
Ανάλυση – Προσομοίωση Ουρών Markov
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασίες Γεννήσεων – Θανάτων (Birth-Death Processes)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εισαγωγή II ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο δεδομένων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 18/04/13 Συστήματα Αναμονής: M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
Moντέλα Καθυστέρησης και Ουρές
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Markov, Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death) Β. Μάγκλαρης
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 8 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ B’) 1. ΔΙΑΚΡΙΣΗ ΜΟΝΤΕΛΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Για την ταξινόμηση.
ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ MARKOV 30/05/2011
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 16/05/13 Δίκτυα Ουρών. ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/13 Διαδικασίες Γεννήσεων-Θανάτων (Birth- Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/08 Ασκήσεις Επανάληψης.
Ασκήσεις - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/04/13 Παραδείγματα χρήσης ουρών Μ/Μ/c/K.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
Χαρακτηριστικά ενός Μ/Μ/1 συστήματος :
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/08 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΟΣ MARKOV ΓΙΑ ΠΡΟΩΘΗΣΗ ΚΙΝΗΣΗΣ STREAMING (VIDEO) Άσκηση Προσομοίωσης 28/5/2012.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 07/05/09 Εκθετική Κατανομή, Διαδικασίες Birth-Death.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Επανάληψη (1): Παράμετροι αξιολόγησης συστημάτων αναμονής –Μέσος ρυθμός απωλειών λ – γ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 01/06/05 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Δικτύων και Υπολογιστικών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 2/03/05. ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Μοντέλα συμφόρησης (congestion) –Κυκλοφορία (οδική, σταθερής τροχιάς) –Ουρές σε καταστήματα, ταχυδρομεία,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 04/07/07 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Περιεχόμενα (1/3) 1.Εισαγωγή Περιεχόμενα Γενική Περιγραφή Συστημάτων Αναμονής Τεχνικές.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/07 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 21/05/09 Διαδικασίες Birth-Death, Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/11 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/06/08 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/06/07 Ουρές Markov Μ/Μ/Ν/Κ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 28/05/08 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 5/07/06 Παραδείγματα Ανάλυσης Ουρών Markov και Μοντελοποίησης Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 12/07/06 Ανάλυση Ουρών Markov Μ/Μ/Ν/Κ Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 13/06/07 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 06/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 23/04/12 Διάγραμμα Μετάβασης Καταστάσεων, Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εργοδικές Πιθανότητες, Ισορροπία Μεταβάσεων - Ουρές Μ/Μ/1 Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Γεννήσεων- Θανάτων (Birth-Death Processes) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
Ουρές Αναμονής.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Ανοικτών Δικτύων Ουρών Κλειστά Δίκτυα Ουρών Β. Μάγκλαρης Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης.
ΚΙΝΗΤΕΣ & ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 1.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Εφαρμογής Άσκηση Προσομοίωσης Βασίλης Μάγκλαρης 6/4/2016.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής – Τύπος Little Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon – Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης 11/5/2016.
Θεωρία Γραμμών Αναμονής ή ΟΥΡΕΣ (QUEUE)
Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών
Βασίλης Μάγκλαρης 2/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης
Βασίλης Μάγκλαρης 13/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov Θεωρήματα Burke & Jackson Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών
Βασίλης Μάγκλαρης 1/6/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Μετασχηματισμοί & Ροπογεννήτριες Συναρτήσεις.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή
Βασίλης Μάγκλαρης 16/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ιδιότητες Κατανομής Poisson & Εκθετικής Κατανομής Διαδικασίες Γεννήσεων.
Βασίλης Μάγκλαρης 5/4/2017 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Μεταγράφημα παρουσίασης:

1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης Μάγκλαρης 30/3/2016

ΕΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ (Επανάληψη - Balance Equations) Απείρως επισκέψιμες καταστάσεις n(t) - positive recurrent states: Με μη μηδενικές εργοδικές πιθανότητες P n (t) = P n > 0, n = 0,1, … Ερμηνεία Εξισώσεων Ισορροπίας: #{μεταβάσεων προς την κατάσταση s} = #{μεταβάσεων εκτός της s} (σφαιρική ισορροπία – global balance equations) #{μεταβάσεων s 1  s 2 } = #{μεταβάσεων s 2  s 1 } (τοπική ισορροπία – local balance equations) Λόγω εργοδικότητας : σε μεγάλο χρονικό διάστημα παρατήρησης Τ, με Τ 1 και Τ 2 τους συνολικούς χρόνους παραμονής στις s 1, s 2 : (1)#{μεταβάσεων s 1  s 2 } = T 1 x r 1,2 (2) #{μεταβάσεων s 2  s 1 } = T 2 x r 2,1 Όπου r 1,2 και r 2,1 οι μέσοι ρυθμοί μετάβασης από 1  2 και 2  1 Λόγω ισορροπίας: (1) = (2), r 1,2 x {T 1 /Τ} = r 2,1 x {T 2 /Τ}, ή r 1,2 x P 1 = r 2,1 x P 2

ΟΥΡΑ Μ/Μ1/Ν Επανάληψη - Εξισώσεις Ισορροπίας Συστήματα Μ/Μ/1/Ν με ρυθμούς άφιξης και ρυθμούς εξυπηρέτησης εξαρτώμενους από τον αριθμό των πελατών στο σύστημα (από την παρούσα κατάσταση του συστήματος) (State Dependent M/M/1/Ν Queues) λnλn μnμn Local Balance Equation λ 0 P 0 = μ 1 P 1 λ i-1 P i-1 = μ i P i, i = 1, 2, …N Global Balance Equation (λ i +μ i )P i = λ i-1 P i-1 + μ i+1 P i+1, i = 0, 1,…, N Κανονικοποίηση Εργοδικών Πιθανοτήτων P 0 +…+ P Ν = 1

ΟΥΡΑ Μ/Μ/1 (Επανάληψη - Αφίξεις Poisson, Εκθετικές Εξυπηρετήσεις, Άπειρο Μέγεθος) Σταθεροί μέσοι ρυθμοί αφίξεων (γεννήσεων) λ n = λ, Poisson Σταθεροί μέσοι ρυθμοί εξυπηρέτησης (θανάτων) μ n = μ Εκθετικοί ανεξάρτητοι χρόνοι εξυπηρέτησης s, E(s) = 1/μ Εργοδικές πιθανότητες καταστάσεων P n = (1-ρ)ρ n, n = 0,1,2,… όπου ρ = U = λ/μ < 1 Erlang για ευστάθεια, P 0 = (1-ρ) <1 Στάσιμος & Εργοδικός μέσος όρος πληθυσμού - κατάστασης n(t) E[n(t)]  E(n) = ρ/(1-ρ) Νόμος του Little: E(T) = E(n)/γ = E(n)/λ (Εργοδικό σύστημα χωρίς απώλειες, λ = γ) E(T) = (1/μ) / (1-ρ)

ΟΥΡΑ Μ/Μ/1/N (Επανάληψη - Αφίξεις Poisson, Εκθετικές Εξυπηρετήσεις, Μέγεθος N)

ΠΡΟΣΟΜΟΙΩΣΗ ΟΥΡΑΣ Μ/Μ/1/10 (Επανάληψη) P n = lim (T n /T) = lim { ([# αφίξεων στη n) / λ]) / ([συνολικού # αφίξεων / λ]) } = lim { [# αφίξεων στη n] / [συνολικού # αφίξεων] } RANDOM : Ομοιόμορφος τυχαίος αριθμός (0,1) ARRIVALS : Συνολικός αριθμός αφίξεων ARRIVAL[STATE] : Αριθμός αφίξεων στην κατάσταση STATE = 0, 1, …,10 COUNT : Αριθμός μεταβάσεων STATE : Κατάσταση ουράς (πληθυσμός συστήματος Μ/Μ/1/10), STATE = 0, 1, …, 10 P[STATE] : Εργοδική πιθανότητα κατάστασης STATE = 0, 1, …, 10 AVERAGE: Μέσος πληθυσμός συστήματος Μ/Μ/1/10 INITIALIZE :COUNT = 0, STATE = 0, ARRIVALS = 0, ARRIVAL[0…10] = 0, P[0…10] =0 ARRIVAL :ARRIVALS = ARRIVALS + 1 ARRIVAL[STATE] = ARRIVAL[STATE] + 1 COUNT = COUNT +1 IF STATE = 10 : GO TO TO LOOP ELSE : STATE = STATE + 1 GO TO LOOP LOOP :IF STATE = 0 : GO TO ARRIVAL ELSE : IF RANDOM < λ / (λ+μ) : GO TO ARRIVAL ELSE : GO TO DEPARTURE DEPARTURE :COUNT = COUNT +1 ; STATE = STATE – 1 IF COUNT < MAXIMUM : GO TO LOOP ELSE : P[STATE=1…10] = ARRIVAL[STATE= 1…10] / ARRIVALS AVERAGE = SUM { STATE ^ P[STATE] }, STATE = [1…10]

ΟΥΡΑ Μ/Μ/2 Εξισώσεις Ισορροπίας: U α = 1-P 0 -P 1b, γ α = μ α U α λP 0 = μ α P 1α + μ b P 1b U b = 1-P 0 -P 1α, γ b = μ b U b (λ+μ α )P 1α = pλP 0 + μ b P 2 γ = λ = γ α + γ b (λ+μ b )P 1b = (1-p)λP 0 + μ α P 2 λ(P 1α +P 1b ) = (μ α +μ b )P 2, λP n = (μ α +μ b )P n+1, n = 2, 3,…. P 0 + P 1α + P 1b + P 2 + P 3 +… = 1, λ/(μ α +μ b ) < 1 για σύγκληση (εργοδικότητα) –Αφίξεις Poisson με ρυθμό λ n = λ –2 ανεξάρτητοι εκθετικοί εξυπηρετητές α, b με άνισους ρυθμούς μ α, μ b –Άπειρη Χωρητικότητα –Άφιξη σε άδειο σύστημα δρομολογείται στον α με πιθανότητα p και στον b με πιθανότητα (1-p)

ΟΥΡΑ Μ/Μ/Ν/Κ –Αφίξεις Poisson με ρυθμό λ n = λ –Ν ανεξάρτητοι εκθετικοί εξυπηρετητές με ίσους ρυθμούς μ –Χωρητικότητα Κ, N ≤ K (π.χ. call center με Ν εξυπηρετητές & δυνατότητα αναμονής μέχρι Κ-Ν κλήσεις) –Ρυθμοί εξυπηρέτησης μ n = nμ, n = 1,2,…,N μ n = Νμ, n = N, N+1,…,K –Εργοδική κατάσταση n(t): Αριθμός πελατών στο σύστημα, αδιάφορα από χρήση συγκεκριμένων εξυπηρετητών (π.χ. σε σύστημα Μ/Μ/2, μ α = μ b = μ, P 1 = P 1α +P 1b ) Εξισώσεις Ισορροπίας: P n = [λ/(nμ)] P n-1, n=1, 2,…, N-1 P n = [λ/(Nμ)] P n-1, n=N, N+1,…, K P 0 + P 1 +…+ P K-1 + P K = 1, P K = P blocking, γ = λ (1-P blocking ) P waiting = P N +…+ P K-1 + P K = 1 – (P 0 + P 1 +…+ P N-1 ) (Erlang-C)

ΟΥΡΑ Μ/Μ/c/c (τηλεφωνικό κέντρο με c εξωτερικές γραμμές, trunks) –Αφίξεις Poisson με ρυθμό λ n = λ –c ανεξάρτητοι εκθετικοί εξυπηρετητές –Χωρητικότητα c –Ρυθμοί εξυπηρέτησης μ n = nμ, n = 1,2,…, c

10 Αναδρομικός Υπολογισμός Β(ρ,0) = 1 Β(ρ,n) = ρΒ(ρ,n-1)/[ρΒ(ρ,n-1)+n], n=1,2,…,c ΠΙΝΑΚΕΣ Erlang B(ρ,c)

Τηλεφωνικό Κέντρο με 7 εξωτερικές γραμμές προωθεί κίνηση (προς τις 2 κατευθύνσεις) με μέσο ρυθμό κλήσεων 2 κλήσεις το λεπτό με μέση διάρκεια κλήσης 3 min. Θεωρώ ότι οι εξωτερικές κλήσεις ακολουθούν διαδικασία Poisson με μέσο ρυθμό λ = 2 κλήσεις/min και χρόνο εξυπηρέτησης εκθετικό με μέση διάρκεια 1/μ = 3 min, άρα το συνολικό προσφερόμενο φορτίο (offered traffic) είναι ρ = λ/μ = 6 Erlangs Υποθέτουμε πως οι κλήσεις που δεν βρίσκουν γραμμή χάνονται οριστικά. Άρα η πιθανότητα απώλειας δίνεται από τον τύπο Β(ρ,c) = B(6,7) = 18.51% Το εξυπηρετούμενο φορτίο (carried traffic) είναι ρ x [1- Β(ρ,c)] = (λ/μ) x [1- Β(ρ,c)] = γ/μ = Erlangs Το φορτίο υπερχείλισης (overflow traffic) είναι ρ x Β(ρ,c) = Erlangs ΠΑΡΑΔΕΙΓΜΑ ΑΝΑΛΥΣΗΣ ΤΗΛΕΦΩΝΙΚΟΥ ΚΕΝΤΡΟΥ

Τηλεφωνικό Κέντρο με c εξωτερικές γραμμές προωθεί κίνηση (προς τις 2 κατευθύνσεις) με μέσο ρυθμό κλήσεων 2 κλήσεις το λεπτό με μέση διάρκεια κλήσης 3 min. Θεωρώ ότι οι εξωτερικές κλήσεις ακολουθούν διαδικασία Poisson με μέσο ρυθμό λ = 2 κλήσεις/min και χρόνο εξυπηρέτησης εκθετικό με μέση διάρκεια 1/μ = 3 min, άρα το συνολικό προσφερόμενο φορτίο (offered traffic) είναι ρ = λ/μ = 6 Erlangs Υποθέτουμε πως οι κλήσεις που δεν βρίσκουν γραμμή χάνονται οριστικά. Ζητείται ο απαιτούμενος αριθμός εξωτερικών γραμμών c (trunks) ώστε το ποσοστό απωλειών (Grade of Service, GOS) να είναι μικρότερο από 0.3% Από τους πίνακες προκύπτει πως Β(6,13) = 0.52% και Β(6,14) = 0.24%, άρα c = 14 trunks ΠΑΡΑΔΕΙΓΜΑ ΣΧΕΔΙΑΣΜΟΥ ΤΗΛΕΦΩΝΙΚΟΥ ΚΕΝΤΡΟΥ