Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεΚαλυψώ Βονόρτας Τροποποιήθηκε πριν 9 χρόνια
1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 21/05/09 Διαδικασίες Birth-Death, Εξισώσεις Ισορροπίας
2
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Συστήματα και Αλυσίδες Markov διακριτού και συνεχούς χρόνου Πιθανότητες και γράφοι / διαγράμματα μετάβασης Στατικές κατανομές και πιθανότητες καταστάσεων Birth-Death Processes Παραδοχές: –Ανεξαρτησία γεννήσεων-θανάτων –Εξέλιξη βασισμένη στο παρόν (Markov) Σύστημα Διαφορικών εξισώσεων Διαφορών –Κατάσταση ισορροπίας (steady state)
3
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασία Γεννήσεων – Θανάτων: –Την χρονική στιγμή t όταν το σύστημα καταλήγει σε πληθυσμό n > 0 μπορεί να έχουν προηγηθεί οι ακόλουθες μεταβάσεις από την χρονική στιγμή t-ΔΤ, ΔΤ 0: Μία άφιξη στο διάστημα ΔΤ, με πιθανότητα λ n-1 ΔΤ Μια αναχώρηση, με πιθανότητα μ n+1 ΔΤ Τίποτα από τα δύο, με πιθανότητα 1- (λ n +μ n )ΔΤ –Η εξίσωση μετάβασης (Kolmogorov) προκύπτει από τον τύπο συνολικής πιθανότητας: P n (t) = λ n-1 ΔΤ P n-1 (t-ΔΤ) + μ n+1 ΔΤ P n+1 (t-ΔΤ) + [1- (λ n +μ n )ΔΤ] P n (t-ΔΤ)
4
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Στο όριο, ΔΤ dt: [P n (t) - P n (t-dt)]/dt = λ n-1 P n-1 (t) + μ n+1 P n+1 (t) – (λ n +μ n )P n (t) ή d P n (t)/dt = λ n-1 P n-1 (t) + μ n+1 P n+1 (t) – (λ n +μ n )P n (t) και σε σταθερή κατάσταση t οο (αν υπάρχει) : P n (t) = P n : Εργοδικές Πιθανότητες (λ n +μ n )P n = λ n-1 P n-1 + μ n+1 P n+1 (εξισώσεις ισορροπίας)
5
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εργοδικές Πιθανότητες P n (t) = P n > 0, n = 0,1, … Απείρως επισκέψιμες καταστάσεις (positive recurrent) Ερμηνεία Εξισώσεων Ισορροπίας: #{μεταβάσεων προς την κατάσταση s} = #{μεταβάσεων εκτός της s} (σφαιρική ισορροπία – global balance equations) #{μεταβάσεων s 1 s 2 } = #{μεταβάσεων s 2 s 1 } (τοπική ισορροπία – local balance equations) Λόγω εργοδικότητας : σε μεγάλο χρονικό διάστημα παρατήρησης Τ, με Τ 1 και Τ 2 τους συνολικούς χρόνους παραμονής στις s 1, s 2 : (1)#{μεταβάσεων s 1 s 2 } = T 1 x r 1,,2 (2) #{μεταβάσεων s 2 s 1 } = T 2 x r 2,,1 Όπου r 1,2, r 2,1 οι μέσοι ρυθμοί μετάβασης από 1 2 και 2 1 Λόγω ισορροπίας: (1) = (2), r 1,2 x {T 1 /Τ} = r 2,1 x {T 2 /Τ}, ή r 1,2 x P 1 = r 2,1 x P 2
6
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Η ουρά Μ/Μ/1 (άπειρου μεγέθους) Σταθεροί μέσοι ρυθμοί αφίξεων (γεννήσεων) λ n = λ, Poisson Σταθεροί μέσοι ρυθμοί εξυπηρέτησης (θανάτων) μ n = μ Εκθετικοί χρόνοι εξυπηρέτησης s, E(s) = 1/μ Εργοδικές πιθανότητες καταστάσεων P n Μέσος όρος πληθυσμού - κατάστασης Ε(n)
7
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Η ουρά Μ/Μ/1 P n = (1-ρ) ρ n, n = 0,1,2,…, ρ = λ/μ < 1 E(n) = ρ/(1-ρ) Νόμος του Little: E(T) = E(n)/γ = E(n)/λ E(T) = (1/μ) / (1-ρ)
8
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Συστήματα Μ/Μ/1 με ρυθμούς άφιξης και ρυθμούς εξυπηρέτησης εξαρτώμενους από τον αριθμό των πελατών στο σύστημα (από την κατάσταση του συστήματος) (State Dependent M/M/1 Queues) λ(n) μ(n) λ(0)λ(1)λ(n-1) μ(1) μ(2) λ(n) μ(n) μ(n+1) 0 12 n-1 n n+1
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.