Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
1
Εισαγωγή στη Μηχανική των Ρευστών
Εισαγωγή στη Μηχανική των Ρευστών Ζαχαριάδου Αικατερίνη ΤΕΙ Πειραιά
2
Ροή των Ρευστών-Ιδανικά ρευστά
Δυναμική των Ρευστών Ροή των Ρευστών-Ιδανικά ρευστά Ιδανικό ρευστό: Ασυμπίεστο Δεν έχει εσωτερική τριβή ή ιξώδες Γραμμή ροής: Η διαδρομή που ακολουθεί ένα σωμάτιο ενός κινούμενου ρευστού Η συνολική εικόνα της ροής δεν αλλάζει με το χρόνο. Κάθε στοιχείο μάζας που διέρχεται από ένα σημείο ακολουθεί την ίδια γραμμή ροής Μόνιμη ροή: Στη στρωτή ροή οι γραμμές ροής δεν μπορούν να διαπεράσουν τα τοιχώματα του σωλήνα ροής Οι γραμμές ροής που περνούν από μια φανταστική στοιχειώδη επιφάνεια Α Σωλήνας ροής: Ρευματική γραμμή: Καμπύλη σε κάθε σημείο της οποίας η εφαπτομένη συμπίπτει με τη διεύθυνση της ταχύτητας του ρευστού στο σημείο αυτό
3
Εξίσωση συνέχειας Στη μόνιμη ροή η ολική μάζα μέσα στο θεωρούμενο τμήμα του σωλήνα ροής είναι σταθερή Ρυθμός παροχής ή παροχή : ο ρυθμός με τον οποίο ο όγκος περνά από μια διατομή Α του σωλήνα, είναι σταθερός: παροχή μάζας: ο ρυθμός ροής μάζας ανά μονάδα χρόνου διαμέσου μιας εγκάρσιας διατομής: Αν το υγρό δεν είναι ασυμπίεστο:
4
Εξίσωση Bernoulli Εξίσωση συνέχειας:
η ταχύτητα ροής ενός ρευστού μπορεί να μεταβάλλεται κατά μήκος της διαδρομής του ρευστού Επίσης μπορεί να μεταβάλλεται και η πίεση, η οποία εξαρτάται από το ύψος και την ταχύτητα ροής Εξίσωση Bernoulli: συνδέει πίεση, ύψος, ταχύτητα ροής Θεώρημα έργου-ενέργειας To έργο που προσφέρεται στο ρευστό κατά τη διάρκεια του dt : Η μεταβολή της κινητικής ενέργειας: Η μεταβολή της δυναμικής ενέργειας:
5
Εξίσωση Bernoulli Η πίεση του νερού στο σπίτι
Έστω το ισόγειο υδροδοτείται με σωλήνα εσωτερικής διαμέτρου 2cm υπό απόλυτη πίεση 4x105Pa (~4atm). H ταχύτητα ροής στο σωλήνα είναι 2m/s O σωλήνας που οδηγεί στο μπάνιο του δεύτερου ορόφου 5m ψηλότερα έχει διάμετρο 1cm. Ποιά η ταχύτητα ροής, η πίεση και η παροχή όγκου στο μπάνιο; Εξίσωση συνέχειας: Ταχύτητα στο μπάνιο: Εξίσωση συνέχειας: P2 = Παροχή όγκου:
6
Η πίεση ενός ρευστού ελαττώνεται καθώς η ταχύτητά του αυξάνεται
καθώς το ύψος αυξάνεται Εξίσωση συνέχειας Η ταχύτητα είναι μεγαλύτερη όταν η επιφάνεια είναι μικρότερη Η πίεση είναι μικρότερη σε σημεία όπου η επιφάνεια είναι μικρότερη
7
Εξίσωση Bernoulli Ταχύτητα εκροής
Δεξαμενή βενζίνης με εμβαδό διατομής Α1, γεμισμένη έως το ύψος h. Ο χώρος πάνω από τη βενζίνη περιέχει αέρα πίεσης P0. Η βενζίνη εκρέει μέσω ενός κοντού σωλήνα με διατομή Α2. Ποια η ταχύτητα εκροής και η παροχή όγκου Εφαρμογή εξίσωσης Bernoulli στα σημεία 1 και 2 Η Α2 <<Α1 άρα υ1<<υ2 και παραλείπεται: Ταχύτητα εκροής: Αν η δεξαμενή είναι ανοιχτή η πίεση P0 ισούται με την ατμοσφαιρική Pa Η ταχύτητα εκροής σε βάθος h από την ελεύθερη επιφάνεια ενός υγρού είναι η ίδια με αυτή που θα αποκτούσε ένα σώμα αν έπεφτε ελεύθερα από ύψος h. Θεώρημα του Toricelli
8
Τι γίνεται αν δεν θεωρήσω ότι υ1<<υ2 οπότε παραλείπεται η υ1 :
Πρέπει με κάποιο τρόπο να «φύγει η υ1»... Εξίσωση συνέχειας
9
Εφαρμογή του νόμου του Bernulli: ο ψεκαστήρας
Η φλέβα του υγρού βγαίνει από την οπή Ο (ακροφύσιο) με μεγάλη ταχύτητα 1 Ο 2 Στη συνέχεια, επειδή πλαταίνει, η ταχύτητά της ελαττώνεται. Η πίεση στο σημείο 1 θα είναι μικρότερη από την πίεση στο σημείο 2 (=με την ατμοσφαιρική) Επειδή στο σημείο 1 επικρατεί υποπίεση το υγρό που βρίσκεται στο κυλινδρικό δοχείο ανεβαίνει στο σωληνίσκο και παρασυρόμενο από το ρεύμα του αέρα διασπάται σε σταγονίδια
10
Πόσος χρόνος απαιτείται ώστε τα νερά του καταρράκτη του Νιαγάρα να γεμίσουν μια λίμνη χωρητικότητας όση η λίμνη του Μαραθώνα (44 x 106 m3). Δίδεται η παροχή του Νιαγάρα: 8x 103m3s-1
11
Έστω δοχείο με οπή στον πυθμένα από την οποία εκρέει πετρέλαιο
Έστω δοχείο με οπή στον πυθμένα από την οποία εκρέει πετρέλαιο. Κάποια στιγμή η ταχύτητα εκροής του πετρελαίου είναι 6ms-1, ενώ η ταχύτητα πτώσης της ελεύθερης στάθμης του πετρελαίου είναι 5ms-1. Ποιό είναι το ύψος του πετρελαίου εντός του δοχείου αυτή τη δεδομένη χρονική στιγμή; Νόμος Bernoulli: Στην επιφάνεια του πετρελαίου και στην οπή επικρατεί η ατμοσφαιρική πίεση: Κατά την εκφώνηση οι δύο ταχύτητες είναι περίπου ίσες άρα δεν ισχύει το θεώρημα Toricelli, σύμφωνα με το οποίο η ταχύητα υ1 πρέπει να είναι αμελητέα σε σχέση με την ταχύτητα υ2
12
Δοχείο ανοικτό στο πάνω άκρο του έχει στον πυθμένα του οπή εμβαδού 2cm2 . Το δοχείο μπαίνει κάτω από βρύση σταθερής παροχής 300cm3/s. Ποιό πρέπει να είναι το ελάχιστο ύψος του δοχείου ώστε να μην υπάρξει υπερχείλιση ; Παροχή: Toricelli: h=11.47m
14
Eξίσωση συνέχειας Εξίσωση Bernoulli για οριζόντια ροή Παροχή:
15
Στο δοχείο εισέρχεται νερό με σταθερή παροχή Π και ταυτόχρονα εξέρχεται από την οπή.
Η στάθμη του νερού θα σταματήσει όταν οι δύο παροχές γίνουν ίσες Ταχύτητα εκροής νερού:
16
Από το νόμο συνέχειας Από το νόμο Bernoulli
17
Εφαρμογή 7.2 Ποιά η ταχύτητα εκροής στο σημείο 1 ;
Από το νόμο Bernoulli ρ2
18
Εφαρμογή 7.3 Αρχή προώθησης πυραύλων
Αρχή προώθησης πυραύλων Έστω δοχείο διατομής Α στο οποίο περιέχεται αέριο με πυκνότητα ρ και πίεση Ρ. Έστω μια μικρή τρύπα διατομής Αο στο πυθμένα του δοχείου. Θέλουμε να βρούμε την ταχύτητα ν0 με την οποία το αέριο διαφεύγει από την τρύπα. Από το νόμο Bernoulli Επειδή για τα αέρια η πυκνότητα είναι πολύ μικρή μπορούμε να αγνοήσουμε τον προσθεταίο που εκφράζει τη μεταβολή της πίεσης με το ύψος Αν Δύναμη προώθησης:
19
Εφαρμογή: το βεντουρίμετρο
Είναι μια διάταξη για τη μέτρηση της ταχύτητας των ρευστών σε σωλήνες Αποτελείται από έναν οριζόντιο σωλήνα ο οποίος έχει μια στένωση και είναι συνδεδεμένος με ένα μανόμετρο που περιέχει υγρό πυκνότητας ρ με το οποίο μετρώνται οι στατικές πιέσεις σε δύο διατομές διαφορετικού εμβαδού Από το νόμο Bernoulli Εξίσωση συνέχειας: Στατικές πιέσεις στα σημεία α και b:
20
Πραγματικά ρευστά Ιξώδες είναι η εσωτερική τριβή σε ένα ρευστό. Οι δυνάμεις τριβής αντιτίθενται στην κίνηση ενός τμήματος του ρευστού ως προς ένα άλλο τμήμα του Ρευστό με εσωτερική τριβή έχει την τάση να προσκολλάται στην επιφάνεια με την οποία είναι σε επαφή, δηλαδή έχει την ίδια ταχύτητα με αυτήν ή αλλιώς δεν κινείται σε σχέση με αυτήν. Για να διατηρηθεί η κίνηση της πάνω πλάκας σταθερή και ίση με υ πρέπει να ασκηθεί δύναμη προς τα δεξιά F Εφαπτομενική ή διατμητική τάση που εξασκείται επί του ρευστού είναι η δύναμη που ασκείται πάνω στην πλάκα προς το εμβαδό Α της πλάκας Η τάση δεν είναι διανυσματικό μέγεθος, εν αντιθέσει με τη δύναμη Διατμητική παραμόρφωση:
21
Έστω η κατάσταση C της πλάκας:
tan(δθ) = ≈ δθ = Συντελεστής ιξώδους: Η μεταβολή της ταχύτητας συναρτήσει της απόστασης d από την κάτω πλάκα :
22
Συντελεστής ιξώδους- συνέχεια
Ιξώδες ή συντελεστής εσωτερικής τριβής: Μονάδες ; Δύναμη Χ χρόνο : Εμβαδόν Θερ. Γλυκερ. Υδράργ. Νερό Βενζίνη Αέρας Υδρογόνο oC Pa * s 10-3Pas 10-6Pas 12.11 1.68 1.787 0.912 17.1 8.4 20 1.49 1.55 1.002 0.652 18.1 8.7 40 0.35 1.45 0.503 19.0 9.1 60 0.12 1.37 0.466 0.392 20.0 9.5 80 1.30 0.355 0.329 20.9 9.8 100 0.24 0.282 21.8 10.2 200 1.05 25.8 12.1 S.I : 1 N s m-2 CGS: 1 poise=1 dyn s cm-2
23
Ροή ρευστού σε σωλήνα Η διαφορά πίεσης P1-P2 αναγκάζει το ρευστό να κινηθεί ενώ η δύναμη εσωτερικής τριβήςς Fτρ αντιδρά στην κίνηση Πώς θα βρεθεί η σταθερά C; Aρχικές συνθήκες: για r=R ν=0
24
Μέγιστη ταχύτητα ν0 για r=0
Η στοιχειώδης παροχή μέσα από τη γραμμοσκιασμένη στοιχειώδη επιφάνεια του σωλήνα είναι: Νόμος Poisseuille
25
Aντιστοιχία μεταξύ ροής φορτίου και ροής μάζας
Νόμος Poisseuille Nόμος του Ohm: Ηλεκτρικά μεγέθη Μηχανικά μεγέθη Ένταση Ι Παροχή Π Φορτίο q Όγκος V Διαφορά δυναμικού V Διαφορά πίεσης P Ηλεκτρική αντίσταση Rηλ Αντίσταση στη ροή Rροής Εφαρμογές
26
Q= Νόμος του Poiseuille H oλική παροχή όγκου είναι αντιστρόφως ανάλογη προς το συντελεστή ιξώδους και ευθέως ανάλογη προς την τέταρτη δύναμη της ακτίνας του σωλήνα και της βαθμίδας πίεσης κατά μήκος του σωλήνα
27
Αντιστάσεις σε σειρά ή παράλληλα
Αντίσταση στη ροή σε σωληνώσεις που είναι συνδεδεμένοι σε σειρά ή παράλληλα Σε σειρά : Παράλληλα:
28
Εφαρμογή 7.8 Μια οριζόντια σωλήνα διαμέτρου 1 cm και μήκους 50 m μεταφέρει πετρέλαιο πυκνότητας 930 Kg/m και ιξώδους 0.12 Pa · s. To πετρέλαιο εισέρχεται με θερμοκρασία 20°C. Η παροχή γίνεται με ρυθμό 0.80 Kg/s υπό ατμοσφαιρική πίεση. α) Βρείτε την πίεση Pa στην είσοδο του σωλήνα, β) Καθορίστε τη μέγιστη ταχύτητα ροής. γ) Δείξτε ότι ο ρυθμός θέρμανσης λόγω εσωτερικής τριβής είναι Καθορίστε το ρυθμό θέρμανσης στα 50 m του σωλήνα. 2,10-107Pa = 207atm Η διαφορά μεταξύ της μηχανικής ισχύος στην είσοδο και την έξοδο εκφράζει το ρυθμό δημιουργίας θερμότητας λόγω εσωτερικής τριβής dN = (Pa-Pb)(2πrdr)v(r) Η ισχύς ισούται με το γινόμενο δύναμης επί την ταχύτητα.
29
Η διαφορά μεταξύ της μηχανικής ισχύος στην είσοδο και στην έξοδο=με το ρυθμό παραγωγής θερμότητας λόγω εσωτερικής τριβής P=F u
30
H παραπάνω σχέση μπορεί να προκύψει πολύ πιο εύκολα με χρήση της αντιστοιχίας ανάμεσα στον νόμο Poiseuille και στον νόμο του Ohm: Κατ αντιστοιχία με τη θερμική ισχύ που αναπτύσσεται σε μια αντίσταση λόγω της διέλευσης ηλεκτρικού ρεύματος:
31
Εφαρμογή 7.9 Να υπολογισθεί ο ρυθμός με τον οποίο μεταβάλλεται το ύψος του υγρού εντός του τριχοειδούς σωλήνα Έστω ότι ο τριχοειδή σωλήνας ακτίνας R κρατείται κατακόρυφος με το κατώτερο άκρο του μόλις κάτω από την επιφάνεια του υγρού, συντελεστού επιφανειακής τάσης γ, ιξώδους n και πυκνότητας ρ. Όταν το υγρό έχει ανέλθει σε ύψος h εντός του τριχοειδούς η διαφορά πίεσης που ωθεί το υγρό προς τ' απάνω θα είναι: ????
32
Εύρεση του νόμου Poisseuille με τη μέθοδο της διαστατικής ανάλυσης
Στη μηχανική προκειμένου να κατασκευαστεί ένα έργο , κατασκευάζεται ένα μοντέλο του υπό κλίμακα και εφόσον τα φαινόμενα που μελετάμε είναι δυναμικά όμοια τα συμπεράσματα που βγαίνουν για το υπό κλίμακα μοντέλο θα ισχύουν και για το υπό κατασκευή έργο. Τεχνική της μηχανικής ομοιότητας: Σύμφωνα με τη διαδικασία της διαστατικής ανάλυσης, κάθε εξίσωση που περιέχει ως μεταβλητές φυσικά μεγέθη πρέπει να είναι διαστατικά ομογενής, δηλαδή κάθε μέλος της εξίσωσης πρέπει να έχει ακριβώς τις ίδιες διαστάσεις
33
Εύρεση του νόμου του Poiseuille με τη βοήθεια της διαστατικής ανάλυσης
Έστω σωλήνας ακτίνας R εντός του οποίου ρεει λόγω διαφοράς πίεσης ΔP ρευστό όγκου V και ιξώδους η Η παροχή είναι: άγνωστοι: 4 σχέσεις μεταξύ τους: 3 Χρειάζεται άλλη μια εξίσωση: Έστω η πίεση κατά μήκος του σωλήνα είναι σταθερή:
34
Εύρεση του νόμου του Poiseuille με τη βοήθεια της διαστατικής ανάλυσης
Πειραματικά: c=π/8
35
Αριθμός Reynolds Κρίσιμη ταχύτητα: η ταχύτητα στην οποία συμβαίνει η μετάβαση από τη στρωτή στη τυρβώδη ροή Μια στρωτή ροή μπορεί να μεταπέσει σε τυρβώδη όταν μεγαλώσει αρκετά η ταχύτητα Υπολογισμός της κρίσιμης ταχύτητας: Η ταχύτητα θα πρέπει να εξαρτάται από: Το ιξώδες του υγρού η Την ακτίνα του σωλήνα R Την πυκνότητα του υγρού ρ (η ροή είναι τυρβώδης άρα υπάρχει επιταχυνόμενη κίνηση άρα παίζει ρόλο η αδράνεια του ρευστού)
36
Αριθμός Reynolds: αδιάσταστο μέγεθος που προσδιορίζεται πειραματικά
Εφαρμογή: Μελέτη προβλημάτων ροής επιτρέποντας μετρήσεις σε συστήματα μικρών διαστάσεων που είναι δυναμικά όμοια με τα πραγματικά Η ροή μέσα σε σωλήνες είναι στρωτή για : O αριθμός Reynolds
37
Κίνηση αντικειμένων μέσα σε ρευστά
Εύρεση της δύναμης αντίστασης: Η αντίσταση που συναντά σώμα μέσα σε ρευστό εξαρτάται από: μια γραμμική διάσταση του σώματος r το ιξώδες του ρευστού η τη ταχύτητα του σώματος v μια αδιάσταση σταθερά CD Τύπος του Stokes Ισχύει για στρωτή ροή (δεν υποθέσαμε εξάρτηση από την πυκνότητα
38
Εύρεση της δύναμης αντίστασης κατά την κίνηση σε τυρβώδη ροή
3 εξισώσεις με 4 αγνώστους αόριστο σύστημα λύνουμε θεωρώντας τον έναν άγωνστο π.χ τον w ως παράμετρο Για w=0 : Τύπος του Stokes Δηλαδή ο αριθμός Reynolds (NR παριστά το λόγο της αντίστασης που υφίσταται ένα σώμα στην τυρβώδη ροή προς τοη τριβή που υφίσταται στη στρωτή ροή Για w=1 : τυρβώδης ροή
39
τυρβώδης ροή ή Το r2 ερμηνεύεται ως η εκτεθειμένη στη ροή μετωπική επιφάνεια του σώματος. Το ½ εισάγεται ώστε η παράσταση μέσα στην παρένθεση να παραπέμπει στη δυναμική πίεση Έστω σφαίρα ακτίνας R που κινείται μέσα σε ρευστό. Η μετωπική επιφάνεια είναι:
40
Κίνηση σφαίρας σε τυρβώδη ροή
πειραματικά για: Τύπος του Stokes Η τιμή του συντελεστή τριβής CD συνεχίζει να ελαττώνεται ενώ αυξάνει ο αριθμός Reynolds μέχρι να φτάσει περίπου την τιμή ≈100. Στη συνέχεια στη περιοχή από 102 έως 105 ο συντελεστής τριβής CD παραμένει περίπου σταθερός στην τιμή 1/2
41
Κίνηση σφαίρας σε τυρβώδη ροή
Αυτής που οφείλεται στην εσωτερική τριβή του ρευστού περί το κινούμενο αντικείμενο και στην αντίσταση λόγω πίεσης που δημιουργείται λόγω παραμόρφωσης του πεδίου ταχυτήτων που και αυτό είναι αποτέλεσμα του ιξώδους. Η μεταβολή του συντελεστή τριβής με το NR είναι αποτέλεσμα του ανταγωνισμού μεταξύ δύο ειδών αντίστασης Συνεπώς αν και η αντίσταση λόγω εσωτερικής τριβής σ' ένα αντικείμενο είναι μικρή σε σχέση με την αντίσταση λόγω πίεσης για ΝR > 10 το ιξώδες παίζει ουσιώδη ρόλο στον καθορισμό της ολικής αντίστασης κατά την κίνηση ενός αντικειμένου μέσα σ' ένα ρευστό. Συνοπτικά η δύναμη τριβής σε τυρβώδη ροή είναι ανάλογη : Όσον αφορά την εξάρτηση του συντελεστή CD από το σχήμα μεγάλο ρόλο παίζει η μορφή του πίσω μέρος του σώματος γιατί εκεί παράγονται στρόβιλοι οι οποίοι καταναλώνουν έργο Ταχύτητας Μετωπικής επιφάνειας Της πυκνότητας Με κατάλληλο αεροδυναμικό σχήμα μειώνονται οι στρόβιλοι άρα και η αντίσταση Του συντελεστή τριβής CD ο οποίος εξαρτάται από το ιξώδες και το σχήμα
42
Δυναμική άνωση-Φαινόμενο Magnus
Όταν ένα ρευστό ρέει γύρω από μια ακίνητη σφαίρα ή κύλινδρο οι γραμμές ροής και η προκύπτουσα κατανομή πιέσεων είναι συμμετρική, συνεπώς δεν υφίσταται συνισταμένη εγκάρσια δύναμη στο αντικείμενο. Όταν όμως η σφαίρα ή ο κύλινδρος περιστρέφονται δημιουργείται μια ασυμμετρία στις γραμμές ροής γιατί το ρευστό κοντά στην επιφάνεια παρασύρεται κατά τη διεύθυνση της περιστροφής Αν εφαρμόσουμε την αρχή της συνέχειας στις δύο φλέβες ροής ΑΑ' και ΒΒ' βλέπουμε ότι στο Α' η ταχύτητα θα είναι μεγαλύτερη απ' ότι στο Β' και σύμφωνα με την ενεργειακή εξίσωση η πίεση στο Α' μικρότερη απ' ότι στο Β' δημιουργώντας έτσι μια ανυψωτική δύναμη fi, που ονομάζουμε δυναμική άνωση. Το φαινόμενο αυτό ονομάζεται φαινόμενο Magnus και είναι υπεύθυνο για τις καμπύλες τροχιές της μπάλας ποδοσφαίρου, του τένις και του ping - pong όταν έχουν όπως λέμε "φάλτσο" (δηλ. περιστρέφονται ενώ κινούνται)·
43
Η ροή ενός ρευστού με ιξώδες γύρω από ένα ακίνητο αλλά ασύμμετρο αντικείμενο, όπως ένα πτερύγιο, επίσης δημιουργεί ανυψωτική δύναμη ροή του αέρα γύρω από μια ασύμμετρη αεροτομή προκαλεί μια πύκνωση των γραμμών ροής πάνα) από αυτή Η ανυψωτική δύναμη, Fl, οφείλεται στη συμπύκνωση των ρευματικών γραμμών πάνω από την άνω επιφάνεια της πτέρυγας μειώνοντας έτσι την πίεση εκεί σε σχέση με το κάτω μέρος όπου οι ρευματικές γραμμές εμφανίζουν αραίωση.
44
Πραγματικά ρευστά Δύναμη F πάνω σε σφαίρα ακτίνας r που κινείται με ταχύτητα υ μέσα σε ρευστό με συντελεστή ιξώδους η. Νόμος Stokes: Χρησιμοποιείται για τον υπολογισμό οριακής ταχύτητας στην οποία φτάνει μια σφαίρα που πέφτει σε ιξώδες ρευστό Υπολογισμός του συντελεστού ιξώδους με μέτρηση της οριακής ταχύτητας Γνωρίζοντας το ιξώδες προσδιορίζουμε την ακτίνα της σφαίρας: Πείραμα Millikan ( ) Προσδιορισμός ακτίνας μικρών ηλεκτρικά φορτισμένων σταγονιδίων λαδιού Στοιχειώδες φορτίο ηλεκτρονίου
45
Τυρβώδης ή στροβιλώδης ροή
Όταν η ταχύτητα ενός κινούμενου ρευστού υπερβεί μια ορισμένη κρίσιμη τιμή η ροή παύει να είναι στρωτή. Ακανόνιστη χαοτική ροή ΤΥΡΒΩΔΗΣ Παράγοντες που καθορίζουν το είδος ροής Πυκνότητα του ρευστού ρ μέση ταχύτητα υ χαρακτηριστική διάσταση του σωλήνα l συντελεστής ιξώδους του ρευστού η Αριθμός Reynolds (αδιάστατη ποσότητα) Για κυλινδρικό σωλήνα διαμέτρου R : Για R>2300 η ροή γίνεται τυρβώδης
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.