Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεPirkko Hukkanen Τροποποιήθηκε πριν 5 χρόνια
1
Vector Resonance from Strong EWSB in pp → WWtt, tttt
CERN, Oct 27, 2005 Vector Resonance from Strong EWSB in pp → WWtt, tttt Ivan Melo M. Gintner, I. Melo, B. Trpisova (University of Zilina)
2
Outline ρtt → tttt + X Motivation for new vector (ρ) resonances:
Strong EW Symmetry Breaking (SEWSB) Vector resonance model ρ signal in pp → ρtt → WWtt + X ρtt → tttt + X
3
EWSB: SU(2)L x U(1)Y → U(1)Q
Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor
4
Chiral SB in QCD EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV
SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV
5
WL WL → WL WL WL WL → t t t t → t t
L = i gπ Mρ /v (π- ∂μ π+ - π+ ∂μ π-) ρ0μ + gt t γμ t ρ0μ + gt t γμ γ5 t ρ0μ
6
International Linear Collider: e+e- at 1 TeV
ee ―› ρtt ―› WW tt ee ―› ρtt ―› tt tt ee ―› WW ee ―› tt ee ―› νν WW ee ―› νν tt Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―› WW tt pp ―› ρtt ―› tt tt pp ―› WW pp ―› tt pp ―› jj WW pp ―› jj tt
7
Chiral effective Lagrangian
SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model - a v2 /4 Tr[(ωμ + i gv ρμ . τ/2 )2] + Lmass LSM(W,Z) + b1 ψL i γμ (u+∂μ – u+ ρμ + u+ i g’/6 Yμ) u ψL + b2 ψR Pb i γμ (u ∂μ – u ρμ + u i g’/6 Yμ) u+ Pb ψR + λ1 ψL i γμ u+ Aμ γ5 u ψL + λ2 ψR Pλ i γμ u Aμ γ5 u+ Pλ ψR BESS Our model Standard Model with Higgs replaced with ρ gπ = Mρ /(2 v gv) gt = gv b2 /4 + … Mρ ≈ √a v gv /2 t
8
Unitarity constraints
Low energy constraints gv ≥ → gπ ≤ 0.2 Mρ (TeV) |b2 – λ2| ≤ → gt ≈ gv b2 / 4 Unitarity constraints WL WL → WL WL , WL WL → t t, t t → t t gπ ≤ (Mρ= 700 GeV) gt ≤ (Mρ= 700 GeV)
9
Partial (Γ―›WW) and total width Γtot of ρ
10
Search at LHC: pp → W W t t + X
J. Leveque et al. ATL-PHYS : pp -> Htt -> WWtt MH =[ ] GeV ρ BRA: pp → ρtt →WWtt σ(WWtt) = σ(ρtt) x BR(ρ->WW) 2) Full calculation: pp → WWtt
11
pp → W W t t + X (full calculation)
39 diagrams in gg channel No resonance background ρ ρ ρ
12
CompHEP results: pp → W W t t + X
ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10 SM: MH = 700 GeV ΓH = 184 GeV MWW(GeV) MWW(GeV) σ(gg) = fb ―› fb σ(gg) = fb ―› fb No resonance background: σ(gg) = fb Cuts: Γρ < mWW < Γρ (GeV) pT > 100 GeV, |y| < 2
13
Total cross sections for ρtt and WWtt
BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)
14
|N(ρ) – N(no res.)| √(N(no res.)) R = ≈ S/√B > 5 BRA Full calc.
15
tttt vs WWtt BRA BRA
16
Conclusions New strong ρ-resonance model
pp → W W t t + X pp → t t t t + X at LHC R values up to a few 100 (before t,W decays and detector effects) Backgrounds pp → tt, W + jets, Z + jets, … ? Similar work on pp → t t t t + X : T.Han et al, hep-ph/
17
Search at Hadron Colliders
Mρ=700 GeV, Γρ=12.5 GeV Tevatron: p + p ―› t + t σS = 1.2 fb σB = fb LHC: p + p ―› t + t σS = fb σB = fb
19
pp → ρ t t + X (8 diagrams in gg channel)
BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)
20
pp → Htt (SM) : σgg(MH = 100) = 943 fb σgg(MH = 700) = 8.2 fb σuu(MH = 100) = 98 fb σuu(MH = 700) = 0.3 fb
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.