Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεHåkan Jakobsson Τροποποιήθηκε πριν 5 χρόνια
1
Yuta Michimura Department of Physics, University of Tokyo
JGW-T April 7, 2019 Interferometer Layout for Both IR and Green Beams, With and Without ITMs Yuta Michimura Department of Physics, University of Tokyo
2
Default by IR Sapphire ns=1.754 for 1064 nm ns=1.772 for 532 nm
Fused Silica nf=1.450 for 1064 nm nf=1.461 for 532 nm Lengths Larm=3000 m Lmx= m Lmy= m Lp3= m Ls3= m Ltms=8.3 m ETMY 0.05deg 0.025deg ITMY PR3 0.08deg BS ITMX 0.025deg ETMX 0.05deg SR3
3
IR Full Calculation consistent with default layout at 10-4 m level
xt=x-Ltms*sinθyt = m θyt=arcsin(ns*sinwETM)-wETM =658 urad Calculation consistent with default layout at 10-4 m level This can be derived from wBS and wITM. Assuming BS incident angle to be ~π/4, θbs=arcsin(nf*sin(arcsin(sin(π/4)/nf)+wBS))-wBS-π/4)/2-θy = (a-1)*wBS/2-θy, where a=√(nf2-sin2(π/4))/cos(π/4) ETMY 0.05deg yp=Lp3*sin(θin) = m x=-Lmy*sin(θy) = m 0.025deg ITMY θbs’= deg =135 deg-θbs θy=arcsin(ns*sinwITM)-wITM =329 urad ybs=-dBS/cos(θr)*sin(θox) = m PR3 θxt=arcsin(ns*sinwETM)-wETM =658 urad 0.08deg BS θin=θy+2*θbs =775 urad θoy=π/4-θbs-θr = deg yt=y-Ltms*sinθxt = m θr=arcsin(sin(π/4-θbs-θy)/nf) = deg ITMX 0.025deg ETMX 0.05deg y=ybs+Lmx*sin(θx) = m xbs=dBS/cos(θr)*sin(θoy) = m θx=arcsin(ns*sinwITM)-wITM =329 urad θs=π/4-θbs-wBS-arcsin(nf*sin(θr-wBS)) = 1429 urad SR3 xs=xbs+Ls3*sin(θs) = m θox=π/4+θbs-θr = deg
4
IR w/o ITMs See JGW-T1807652 for calculation except for TMS
Δxt ~ -Ltms*Δθyt =-6.9 um (so small) Beam position change at TMS will be very small (even if there is no ETM). 3 km arm assures tiny incident angle to ETM. Δθyt ~ Δθey =0.833 urad See JGW-T for calculation except for TMS ETMY 0.05deg Δθey~Δx/Larm = urad Refraction angle by BS wedge stays the same; θbsr ~ (a-1)*wBS, where a=√(nf2-sin2(π/4))/cos(π/4) = 1103 urad Δx~Lmy*Δθin-Δox = m 0.025deg ITMY Δθex~Δy/Larm = 4.65 urad PR3 0.08deg BS To compensate no wITM Δθin~θx = 329 urad Δθxt ~ Δex = 4.65 urad Δyt ~ Ltms*Δθxt = 38.6 um (so small) Δox~Δoy~Lp3*δθin = m ITMX 0.025deg ETMX 0.05deg Δy~(Lp3+Lmx)*Δθin = m Compared with IR Full SR3
5
Green w/o ITMs Compared with IR w/o ITMs ETMY 0.05deg Δθey~Δx/Larm
= urad Refraction angle by BS wedge changes. θbsr532 ~ (a532-1)*wBS where a=√(nf5322-sin2(π/4))/cos(π/4) θbsr532 ~ 1128 urad Δx~Lmy*Δθin-Δox = m 0.025deg ITMY Δθex~Δy/Larm = urad PR3 To compensate θbsr change, Δθin ~ θbsr532-θbsr = 24.9 urad 0.08deg BS Δox~Δoy~Lp3*Δθin = m ITMX 0.025deg ETMX 0.05deg Δy~Δoy = m Compared with IR w/o ITMs SR3
6
Green X Full Compared with IR Full ETMY 0.05deg Δyp ~ -Δox+Lp3*Δθin
ITMY Δθxt=θxt532-θyx ~ (ns532-ns)*wETM =15.7 urad PR3 0.08deg BS Δθin=-Δθx+θbsr532-θbsr = urad Δyt=-Ltms*Δθyt = m Δox~Δoy~Lmx*Δθx = m ITMX 0.025deg ETMX 0.05deg Δθx=θx532-θx ~ (ns532-ns)*wITM =7.85 urad Compared with IR Full SR3
7
Green Y Full Compared with IR Full Δxt=-Ltms*Δθyt =-0.00013 m
Δθyt=θyt532-θyt ~ (ns532-ns)*wETM =15.7 urad ETMY 0.05deg 0.025deg ITMY PR3 Δθy=θy532-θy ~ (ns532-ns)*wITM =7.85 urad 0.08deg BS Δox~Δoy~Lmy*Δθy = m ITMX 0.025deg ETMX 0.05deg Δθs=Δθy+θbsr532-θbsr = urad Compared with IR Full SR3 Δxs ~ Δox+Ls3*Δθs = m
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.