Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
3
The classical picture is that the incident radiation excites dipolar oscillations in a polarisable system such as a molecule or atom which can act as secondary sources of EM radiation Harry Kroto 2004
4
P = E E = Eocos2πωt P = Eocos2πωt 4
5
this shows a Hertz osci http://en. wikipedia. org/wiki/File:Dipole
this shows a Hertz osci -oli Harry Kroto 2004 5
6
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t]
6
7
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t]
7
8
½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t]
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] αo Eo cos 2πωet ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] 8
9
½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t]
P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t] αo Eo cos 2πωet ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t] ½(∂α/∂q) qo Eo[cos 2π(ωe- ωq)t] 9
10
ωe ω →
11
ωe ωe+ ωq ω → 11
12
ωe ωe- ωq ωe+ ωq ω → 12
13
ωe Stokes Line Anti-Stokes Line ωe- ωq ωe+ ωq ← ωq → ← ωq → ω → 13
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
Harry Kroto 2004 24
25
P = E 25
26
P = E E = Eocos2πωt 26
28
P = α E Total polarisability
29
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate
30
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe
31
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq
32
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E
33
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet
34
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet
35
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet P = αo Eo cos 2πωet + (∂α/∂q) qo Eocos 2πωqt cos 2πωet
36
P = α E Total polarisability
α = αo + (∂α/∂q)q Molecular polarisability - function of coordinate E = Eo cos 2πωet Electric Field radiation frequency ωe q = qo cos 2πωqt coordinate of the molecular motion ωq P = [αo + (∂α/∂q) q] E P = [αo + (∂α/∂q) q] Eo cos 2πωet P = [αo + (∂α/∂q) qo cos 2πωqt] Eo cos 2πωet P = αo Eo cos 2πωet + (∂α/∂q) qo Eocos 2πωqt cos 2πωet P = αo Eo cos 2πωet + ½(∂α/∂q) qo Eo[cos 2π(ωe+ ωq)t + cos 2π(ωe- ωq)t]
37
P = E E = Eocos2πωt P = Eocos2πωt 37
39
P = E E = Eocos2πωt P = Eocos2πωt 39
40
P = E E = Eocosωt P = Eocosωt
41
Attenuation due to scattering by interstellar gas and dust clouds
Harry Kroto 2004
42
Harry Kroto 2004
43
Harry Kroto 2004
44
P = E
45
P = E
46
P = E
47
P = E
48
Bill Madden
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.