Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεHadi Widjaja Τροποποιήθηκε πριν 5 χρόνια
1
Kafli 17: Biðraðafræði Fæst við að lýsa biðröðum á stærðfræðilegan hátt Dæmi um biðraðir: bankar/stórmarkaðir – bið eftir afgreiðslu tölvur – bið eftir CPU tíma bilanir – bið eftir að hlutur bili t.d. íhlutur í vél almenningsvagnar – bið eftir strætó Þjónustuver Óhagstætt að hafa engar biðraðir, t.d. hvað þyrfti marga kassa í Hagkaup ef engar biðraðir ættu að vera á álagstímum? Við hönnun biðraðakerfa þarf því að finna jafnvægi milli þjónustu við viðskiptavini og hagkvæmni Slembin ferli og ákvarðanafræði
2
Biðraðakerfi Grunneiningar biðraðakerfis Biðröð Biðraðakerfi
C S Inntaksmengi CCCC Viðskiptavinur sem hefur verið þjónustaður Viðskiptavinur Biðröð Afgreiðslu-stövar Biðraðakerfi Slembin ferli og ákvarðanafræði
3
Biðraðakerfi Inntaksmengi Millikomutími Mengi mögulegra viðskiptavina
Geta verið óendanlega margir (einföldun) eða takmarkaður fjöldi, t.d. vélar í vélasal. Millikomutími Tími milli koma viðskiptavina Tíminn er óreglulegur og fer eftir ákveðinni líkindadreifingu, oft er gert ráð fyrir að millikomutíma sé hægt að lýsa með veldisdreifingu Slembin ferli og ákvarðanafræði
4
Biðraðakerfi Biðröð Afgreiðslustaður (þjónusta)
Biðraðir geta verið misjafnar að stærð. Ef ekki er gert ráð fyrir takmörkunum, gerum við ráð fyrir að þær séu geti orðið óendanlega langar Biðraðamenning (“Queue discipline”) Frávísanir (“Balking”) Afgreiðslustaður (þjónusta) Þar fá viðskiptavinir þjónustu Þjónustutímanum er lýst með líkindadreifingu Slembin ferli og ákvarðanafræði
5
Helstu tákn, forsendur N – ástand kerfis, fjöldi viðskiptavina í kerfi (bið + þjónustu) Pn – líkur á nákvæmlega n viðskiptavinum í biðkerfi S – fjöldi þjónustustaða (servers) λn – meðal komutíðni (væntanlegur fjöldi koma á tímaeiningu) μn – þjónustutíðni (væntanlegur fjöldi afgreiðslna á tímaeiningu) 1/λ – væntur millikomutími 1/μ – væntur þjónustutími Slembin ferli og ákvarðanafræði
6
Helstu tákn ρ – nýtnistuðull kerfisins (utilization), segir til um hversu vel afgreiðlustöðvar eru nýttar ρ = λ/(sμ) Nýtnistuðullinn segir okkur hversu stóran hluta tímans afgreiðslustaðurinn er upptekinn Einnig kallað álag (einingalaus, Erlang) Slembin ferli og ákvarðanafræði
7
Ritháttur biðraðakerfis
Flestar biðraðir og eiginleika þeirra má tákna með þremur stikum ________/________/________ drefing millikomutíma /dreifing afgreiðslutíma / fjöldi afgreiðenda M: Markovian (veldisdreifing) D: Degenerate, deterministic Ek: Erlang G: General (hvað sem er) Til dæmis M/M/1 kerfi, komu- og afgreiðslutímar lúta veldisdreifingu og aðeins er einn afgreiðandi Slembin ferli og ákvarðanafræði
8
Helstu tákn, niðurstöður
Pn – líkur á n viðskiptavinum í kerfi L – væntanlegur fjöldi viðskiptavina í kerfi Lq - væntanlegur fjöldi viðskiptavina í biðröð W – Dvalartími í kerfi W=E[W ] – væntanlegur dvalartími í kerfi W q – biðtími í röð Wq=E[W q] Slembin ferli og ákvarðanafræði
9
Jafna Little Tengsl L, W, Lq, Wq Í jafnvægisástandi þá er L=lW
Einnig er Lq=lWq W=Wq+1/m Slembin ferli og ákvarðanafræði
10
Eiginleikar veldisdreifingar
Algengasta biðraðalíkanið er M/M/s sem gerir ráð fyrir að tími milli koma sé veldisdreifður og að þjónustutími sé einnig veldisdreifður E[T]= 1/a og VAR[T]=1/a Minnkandi fall Minnisleysi Minnsta gildi nokkurra veldisdreifðra slembinna breyta hefur veldisdreifingu Tengsl við Poisson dreifingu: Ef tími milli atburða er veldisdreifður með parameter a, þá fylgir fjöldi atburða á tímabili T, Poisson dreifingu með parameter aT Slembin ferli og ákvarðanafræði
11
Fæðinga/dauða ferli (birth-death process)
Byggist á tveimur forsendum: Ástand kerfis N(t)=n Ef n eru í kerfinu er tíminn þar til annar kemur inn í kerfið (fæðing) veldisdreifður með λn Ef n eru í kerfinu er tíminn þar til næsti líkur þjónustu (deyr) veldisdreifður með μn Teiknum upp “rate-diagram” sem lýsir ferlinu í stöðugu ástandi n+1 3 2 1 n-1 n ... μ3 μ1 μ2 μn+1 μn λn λ0 λ1 λn-1 λ2 Slembin ferli og ákvarðanafræði
12
Jafnvægisjöfnur Í öllum kerfum sem eru í jafnvægi er jafnvægi milli fæðinga og dauða – svokölluð “flæði inn = flæði út” regla Með því að notfæra okkur þessa reglu getum við stillt upp jöfnum sem tengja saman þjónustutíma, afgreiðslutíma og líkur á að vera í ákveðnu ástandi Slembin ferli og ákvarðanafræði
13
“Flæði inn = Flæði út” reglan
ln n-1 3 2 1 n ... μ1 μ2 μ3 μn+1 μn l0 l1 ln-1 l2 Slembin ferli og ákvarðanafræði
14
Jöfnur fyrir fæðinga-dauða ferli
Skilgreinum nýja stærð til hægðarauka Pn = líkur á að n séu í kerfi L = Væntigildi fjölda viðskiptavina í kerfi W=Væntanlegur tími í kerfi, fundinn með jöfnu Little Lamda yfirstrikað er meðal komutíðni Slembin ferli og ákvarðanafræði
15
M/M/1 Fyrir M/M/1 fást eftirfarandi jöfnur:
P0 = 1- r (líkur á að engin viðskiptavinur sé í kefinu) Pn = r n P0 L = l/(μ- l) = r /(1- r) Lq = l2/ (μ(μ-l)) W = 1/ (μ- l) Wq = l/ (μ(μ- l)) Slembin ferli og ákvarðanafræði
16
Dreifing biðtíma M/M/1 Ef W er tími í kerfi (röð + þjónusta), þá er hægt að sýna fram á að dreifing biðtíma er veldisdreifður!!! Biðtími í röð Wq Slembin ferli og ákvarðanafræði
17
Dæmi: Bílaþvottastöð Bílar koma á bílaþvottastöð með veldisdreifðum millikomutíma og þjónustutími er einnig veldisdreifður Komutíðni l=0.1 bíll/mín, athuga mismunandi þjónustutíma: Slembin ferli og ákvarðanafræði
18
Dæmi: Bílaþvottastöð (frh)
Ath. hvað gerist þegar nýtnin nálgast 1.0!!!!!! Slembin ferli og ákvarðanafræði
19
M/M/s kerfi Margir þjónustustaðir, veldisdreifður millikomutími og þjónustutími Leiði út jöfnur fyrir P0 og Pn s+1 ln s-1 2 1 s μ1 2μ2 sμn+1 sμn l0 l1 ln-1 ... Slembin ferli og ákvarðanafræði
20
M/M/s kerfi Fáum ástandslíkur fyrir M/M/s kerfi:
Slembin ferli og ákvarðanafræði
21
M/M/s kerfi Finnum væntigildi stærða fyrir kerfi:
Slembin ferli og ákvarðanafræði
22
M/M/s kerfi Tíminn sem viðskiptavinur eyðir í kerfi er slembin breyta W, líkur á að viðskiptavinur eyði meiri tíma en t í kerfi er Tíminn sem viðskiptavinur eyðir í biðröð er slembin breyta Wq, líkur á að viðskiptavinur eyði meiri tíma en t í biðröð er Slembin ferli og ákvarðanafræði
23
Þjónustustig Skilgreint sem hlutfall viðskiptavina sem svarað er á innan við t tímaeiningum (t.d. 90% símtala er svarað á innan við 1 mínútu) Þjónustustig: Þar sem: Slembin ferli og ákvarðanafræði
24
Dæmi: Spítali Þrír læknar bjóða ókeypis glákupróf einu sinni í viku. Prófið tekur að meðaltali 20 mín og hvert próf lýtur veldisvísisdreifingu. Sjúklingar koma að meðaltali 6 á hverri klukkustund (millikomutímarnir eru veldisdreifðir). Læknarnir hafa áhuga á því að vita a) hver er meðalfjöldi sem bíður b) meðaltími sem sjúklingur eyðir á spítalanum c) hlutfall tíma sem læknir eyðir aðgerðalaus. Slembin ferli og ákvarðanafræði
25
Dæmi: Miðasala Gerum ráð fyrir að viðskiptavinir komi með veldisdreifðum millikomutíma og að þjónustutími sér veldisdreifður. l=0,1 viðskv./min og μ =0,08viðskv./min. Dugar einn afgreiðslustaður? Ef s=1 þá er r = l / μ =0,01/0,08 > 1 – röðin hleðst upp Ef s=2 hvað er þá P0, Lq, Wq, W og L ? Viljum að 90% viðskiptavina bíði skemur en 5 mínútur, hversu marga þjonustufulltrúa þarf? Slembin ferli og ákvarðanafræði
26
Ein röð eða margar (Pooling Effect)?
Oft er hægt að velja á milli tvenns konar afgreiðslukerfa Eina röð og s-þjónustustaði eða s raðir og einn þjónustustað fyrir hverja. μ μ μ μ μ μ Slembin ferli og ákvarðanafræði
27
Ein röð eða margar? Skoðum sértilfellið þegar s=2, l=2 og μ=3
Skoðum fyrst eina röð – tvo afgreiðslustaði: r = l/(sμ) = 2/6 , L= 0,75, Lq=0,083, W =0,375, Wq=0,042 og P0 = 0,5 Tvær raðir – þá skiptast viðskiptavinirnir á tvær raðir: r = (l /2)/μ = 1/3 – ath sami nýtni stuðull L = 0,5 2*L = 1 Lq=0, *Lq=0,334 W=0,5, Wq=0,167 P0=0,6667 en P02 =0,444 Slembin ferli og ákvarðanafræði
28
Frávísun, biðraðir þar sem aðeins er pláss fyrir takmarkaðan fjölda í röð (M/M/s/K)
Getum sett það fram á myndrænan hátt sem: Gerum ráð fyrir að λ og μ breytist ekki. s+1 λn s-1 2 1 s μ1 2μ2 sμn+1 sμn λ0 λ1 λn-1 k-1 λk-1 ... k Slembin ferli og ákvarðanafræði
29
Biðraðir þar sem aðeins er pláss fyrir takmarkaðan fjölda í röð (M/M/s/K)
Getum sett um jafnvægisjöfnur (rate in = rate out) og þá fáum við jöfnur fyrir Cn, P0, Pn, L, Lq, W og Wq (t.d. ef s>1). Sjá tilfelli ef s=1 á bls Slembin ferli og ákvarðanafræði
30
Biðraðir þar sem aðeins er pláss fyrir takmarkaðan fjölda í röð (M/M/s/K)
Reiknum væntigildi Slembin ferli og ákvarðanafræði
31
Dæmi Rakari hefur aðeins þrjá stóla á biðstofunni sinni. Meðalafgreiðslutíminn (velidsvísisdreifður) er 30 mín en meðal millikomutími (veldisvísidreifður) er 40 mín. Ef biðstofan er full snúa viðskiptavinirnir frá og koma ekki aftur. Reiknið L, Lq, W, Wq og líkur þess að viðskiptavinur snúi frá. Slembin ferli og ákvarðanafræði
32
Dæmi Rakarinn hefur vegna fjölda áskoranna ákveðið að sameinast Gulla greiðu samkeppnisrakaranum við hliðina. Þeir brjóta niður vegginn á milli og er þá pláss fyrir 7 á biðstofunni. Þeir búast við að meðal millikomutími fari niður í 13 mínútur við þessar breytingar. Afgreiðslutími helst óbreyttur (þeir raka og klippa á svipuðum hraða). Reiknið L, W. Hverjar eru líkurnar á að viðskiptavinur snúi frá eftir breytingarnar? Slembin ferli og ákvarðanafræði
33
Endanlega stór hópur viðskiptavina
Til eru raðir þar sem fjöldi mögulegra viðskiptavina er takmarkaður. Til dæmis fjöldi véla í vélasal (sem bila). Afleiðing þess er að millikomutímar lengjast eftir því sem fleiri eru í röð (líkur á því að vél bili fer þverrandi). Slembin ferli og ákvarðanafræði
34
Endanlega stór hópur viðskiptavina
Kerfið má setja fram myndrænt. Ef þjónustustöð er ein: Ef þjónustustöðvar eru s n (N-n+1)λ n-2 2 1 n-1 μ Nλ (N-1)λ (N-n+2)λ N-1 λ ... N s (N-n+1)λ s-2 2 1 s-1 μ 2μ sμ (s-1)μ Nλ (N-1)λ (N-n+2)λ N-1 λ ... N Slembin ferli og ákvarðanafræði
35
Endanlega stór hópur viðskiptavina
Eins og áður má leiða út formúlur fyrir Cn, P0, Pn, L, Lq, W, Wq. Formúlurnar eru á blaðsíðu 865 fyrir s=1 og fyrir s>1 Dæmi: 5 vélar eru í vélasal. Þær bila hver með tíðninni 0.1/dag. Viðgerð tekur að meðaltali 4 daga. Hvað eru margar vélar bilaðar að meðaltali? Slembin ferli og ákvarðanafræði
36
Óveldisdreifður þjónustutími
M/G/1: G stendur fyrir general distribution (almenn dreifing) með meðaltal 1/m og fervik s2 Í stöðugu ástandi gildir: Athugið að L, Lq, W, Wq stækka allar þegar s2 stækkar (server consistency skiptir miklu máli). Ekki til almenn jafna fyrir M/G/s!!! Slembin ferli og ákvarðanafræði
37
Sértilfelli M/D/s: Fastur þjónustutími
Ef s=1, set s2=0 í jöfnum fyrir M/G/1 Ath. Lq og Wq eru helmingi minni en ef um M/M/1 kerfi væri að ræða Ef s>1, sjá mynd sem sýnir L sem fall af r M/Ek/s: Erlang dreifður þjónustutími Meðaltal 1/m og staðalfrávik 1/(mk) Summa veldisdreifðra breyta hefur Erland dreifingu M/Ek/1- Nota í jöfnu fyrir M/G/1 sjá bls. 875 M/ Ek/s – Númeriskar aðferðir, sértilfelli s=2 sýnt á mynd 17.13 Slembin ferli og ákvarðanafræði
38
Samanburður Bera saman M/M/1 M/Ek/1 M/D/1
Slembin ferli og ákvarðanafræði
39
Biðraðir með forgangsröðun
N forgangshópar Hópur 1 hefur mesta forgang Hópur N hefur minnsta forgang Tvær útgáfur Non-preemptive: Ef þjónusta hefur byrjað, þá er henni lokið áður en nýr viðskiptavinur er þjónustaður Preemptive: Ef viðskiptavinur með hærri forgang en sá sem er í þjónustu kemur í kerfið, þá er þjónustu við núverandi viðskiptavin hætt og hann fer aftur í röðina Slembin ferli og ákvarðanafræði
40
Nonpreemptive priorities
Væntanlegur tími í kerfi fyrir viðskiptavin í forgangshóp k Slembin ferli og ákvarðanafræði
41
Dæmi Þrenns konar umsóknir um lán berast lánastofnun. Núverandi þjónustukerfi er sett þannig upp að allar umsóknir eru unnar af einum þjónustufulltrúa Meðal komutíðni fylgir Poisson ferli og er að meðaltali 8 umsóknir á dag, það tekur jafn langan tíma að þjónusta hvern viðskiptavin, eða 0.1 vinnudag. Hingað til hafa allar umsóknir verið afgreiddar skv. FCFS (fyrstir koma, fyrstir fá) stefnu. Komið hefur í ljós að það er mikilvægt að umsóknir af tegund 1 séu afgreiddar sem fyrst. Umsóknir af tegund 2 mega bíða lengur og umsóknir af tegund 3 þola bið. Þessar tegundir umsóknar berast lánastofnuninni með eftirfarandi komutíðni: l1= 2 umsóknir/dag, l2= 4 umsóknir/dag, l3= 2 umsóknir/dag. Berið saman væntanlegan tíma sem viðskiptavinur eyðir í kerfinu fyrir eftirfarandi kerfi. A) FCFS B) Non-preemtive priority C) Preemtive priority Slembin ferli og ákvarðanafræði
42
Biðraðanet (Queuing networks)
T.d. Framleiðsluferli, samskiptakerfi Jafngildiseiginleiki: Gefið þjónustukefi með s þjónustustöðvum, veldisdreifðum millikomutíma og þjónustutíma (M/M/s líkan), þar sem sm >l. Þá er úttak í stöðugu ástandi Poisson með parameter l Þýðing: Gefið net biðraða, þá er úttak úr einu kerfi, inntak í annað Skoðum tvö kerfi: Raðtengdar biðraðir Jackson net Slembin ferli og ákvarðanafræði
43
Raðtengdar biðraðir Skoða hvert kerfi fyrir sig sem M/M/s kerfi
Vegna þess að kerfi eru óháð þá er Slembin ferli og ákvarðanafræði
44
Raðtengdar biðraðir Dæmi: Síðustu tvö stig bílaframleiðslu eru að setja vél í bíl og festa á dekk. Að meðaltali koma 54 bílar á klst. Þar sem vélin er sett í er þjónustutíðnin 60 bílar/klst (einn þjónustustaður). Næst eru dekk fest á en þar eru 3 starfsmenn og er þjónustutíminn 3 mín. Per. Bíl. Ákvarðið lengd biðraðar á hvorum stað Lq Ákvarðið væntanlegan tíma sem bíll bíður í röð eftir að vera þjónustaður Slembin ferli og ákvarðanafræði
45
Jackson network Net m þjónustustöðva þar sem hver þjónustustaður (i=1,2,...,m) hefur Óendanlega biðröð Viðskiptavinir koma skv. Poisson ferli með parameter ai si þjónustustaðir með veldisdreifðan þjónustutíma með parameter mi Þegar viðskiptavinur yfirgefur i fer hann á þjónustustað j (j=1,2,..,m, ji) með líkum pij eða hann yfirgefur kerfið Þetta er hægt modelera eins og M/M/s raðir með komutíðni ai mi i j k l pij pik pil 1-(pij+pik+pil) Slembin ferli og ákvarðanafræði
46
Jackson network Dæmi: Tryggingafélag nokkurt hefur þrískipt símkerfi. Símtöl koma inn á megin númeri, að meðaltali 35 per. Klst. Þar er boðið upp á tvo valkosti, ýta á 1 til að fá tenginu við nýjar beiðnir eða ýta á 2 til að fá tengingu við lögfræðideild vegna beiðna sem eru í vinnslu. Grf. Að það taki viðskiptavin að meðaltali 30 sek að hlusta á upplýsingar og ýta á takka (veldisdreift), og aðeins geti einn viðskiptavinur hlustað á upplýsingarnar í einu. 55% viðskiptavina sem hringja ýta á 1, þar eru 3 þjónustufulltrúar sem taka við upplýsingum og að meðaltali tekur 6 mínútur mínútur að þjónusta viðskiptavin, (þjónusta felst einkum í að taka niður upplýsingar til að hægt sé að senda út rétt form). Restin, eða 45% viðskiptavina ýta á 2 til þess að tala við lögfræðideild og það tekur að mealtali 20 mín. Gert er rá fyrir óendanlega stórum biðröðum. Uþb. 2% þeirra sem tala við nýjar beiðnir, er næst vísað í lögfræðideild, og uþb. 1% þeirra sem tala við lögfræðideild er vísað í upplýsingar. Metið meðalfjölda viðskiptavina sem bíða eftir þjónustu. Slembin ferli og ákvarðanafræði
47
Kafli 18: Notkun biðraðafræði
Við hönnun biðraðakerfis þarf oft að taka ákvarðanir sem snerta: ákvarðanir á fjölda þjónustustaða (t.d. hvernig á að skipta röð) þjónustuhraði þjónustustaða (t.d. tegund véla) fjöldi þjónustufulltrúa á þjónustustað (s) Queue disciplie Ákvörðunarbreytur eru iðulega, l, m og s Markmið oft finna það þjónustustig sem gefur lægstan heildakostnað T.d., Min E[TC]=E[SC]+E[WC] Slembin ferli og ákvarðanafræði
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.