Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
1
CIRCLES Arc Length, Sectors, Sections
2
Circumference C = 2πr C = 2π7 C = 14π 7
3
area A = πr² A = π9² A = 81π 9
4
A B ARC LENGTH The length of AB represents a fractional part of the circle’s circumference. If the mAB Is 90°, then the length of AB is 90/360th (1/4th) of the circumference.
5
C = 2 π r C = 2 π 6 C = 12π Find the length of AB
90/360 = ¼ Length of AB = ¼·12π = 3π
6
C = 2πr C = 16π AB = 60/360 of 16π AB = 1/6 · 16π AB = 1 · 16π 6 1
60° A B AB = 60/360 of 16π AB = 1/6 · 16π AB = 1 · 16π AB = 8π 3 8
7
Find the length of XYZ C = 2πr C = 18π XYZ = 240 of 18π 360
120° Find the length of XYZ 9 C = 2πr C = 18π XYZ = 240 of 18π 360 XYZ = 2 · 18π XYZ = 12π 360° - 120° 240°
8
Sectors are a fractional part of a circle’s area
Area of sectors Sectors are a fractional part of a circle’s area
9
Sector area = ¼ of 64π 64π = 16π 4 Find the shaded area
A = πr² A = 64π 8 Sector area = ¼ of 64π 64π = 16π 4 90 of circle’s area 360
10
A = 1 of 144π 6 144π = 24π Area = πr² A = 144π Sector area = 60° 12
60 of circle’s area 360
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.