Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
1
Bero-transmisio mekanismoak
2
Beroa 3 mekanismoren bitartez transmititu daiteke:
KONDUKZIOA (Fourier-en legea) KONBEKZIOA (Newton-en hozketa-legea) ERRADIAZIOA (Stefan-Boltzman-en legea) T2 G Q T1
3
Fourier-en legea : KONDUKZIOA Tenperatura eremua = (x,y,z,t )
Tenperatura gradientea Grad = (/n) n z n Grad = = (/x) i + (/y) j + (/z) k x y Fourier-en legea : q = Q/A = - k (θ) q = qx i+ qy j+ qz k= -[ kx () ] i - [ky () ] j - [kz () ] k
4
dQsartu + dQgaratu = dQirten + dEmetatu
Kondukzioaren ekuazio orokorra: qz+dz z qx qG qy qy+dy qx+dx y qG= elementuan barne garatutako beroa (W/m3) qz x Energia-balantzea eginez: dQsartu + dQgaratu = dQirten + dEmetatu dQsartu = qx dydz + qy dxdz + qz dxdy dQgaratu = qG dV dQirten = qx+dx dydz + qy+dy dxdz + qz+dz dxdy dEmetatu = cp /t dm = dV cp /t
5
Fourier aplikatuz: qx = -k()/x
qx dydz + qy dxdz + qz dxdy + qG dV = qx+dx dydz + qy+dy dxdz + qz+dz dxdy + dV cp /t Fourier aplikatuz: qx = -k()/x Taylor-en seriean garatuz: qx+dx = qx + ( qx/x) dx qx + [ (-k()/x) / x ] dx qG dV = [ (-k()/x) / x ] dx dydz + [ (-k()/y) / y ] dy dxdz + [ (-k()/z) / z ] dz dxdy + dV cp /t = [ -k() ] dV + dV cp /t qG = [ -k() ] + cp /t
6
Hipotesiak: materiale isotropoa K()x = K()y = K()z propietate fisikoak konstanteak K() = K = Kte qG = kte Kondukzioaren ekuazio orokorra k 2 + qG = cp /t 2 = laplaziarra: Koordenatu kartesiarretan 2 = 2/x2 + 2/y2 + 2/z2 Koordenatu zilindrikotan 2 = 1/r (r/r)/r + 1/r2 2/2 + 2/z2 Koordenatu esferikotan 2 = 1/r2 (r2/r)/r + ...
7
(ariketaren ingurune baldintzak aplikatuz)
Errejimen egonkorrean /t = 0 k 2 + qG = 0 1.kondukzioaren ekuazio orokorra ebatzi tenperatura-distribuzioa (ariketaren ingurune baldintzak aplikatuz) 2. Fourier-en legea aplikatu bero-transmisioa Aztertuko ditugun kasuak: Pareta laua bero-garapenarekin eta garapenik gabe Pareta zilindrikoa “ “ Pareta esferikoa “ “
8
1. Kasua: pareta laua bero-garapenarekin
k 2 + qG = cp /t = ( x,y,z,t ) Errejimen egonkorra Fluxu unidimentsionala p p qG = ( x ) x Q k 2 + qG = 0 L L non 2 = 2/x2 = d2 /dx2 k 2 + qG = k d2 /dx2 + qG = 0 d2 /dx2 = -qG/k d/dx = -qG x / k + C1 (x) = -qGx2/2k + C1 x + C2
9
1.ingurune baldintza: x= 0 qx=0 d/dx = 0
C1 eta C2 integrazio konstanteak kalkulatzeko, ingurune baldintzak aplikatu: 1.ingurune baldintza: x= qx= d/dx = 0 2. Ingurune baldintza: x = + L = p L x p Q qG (x) 1.i.b. aplikatuz: d/dx = 0 = -qG/k 0 + C C1 = 0 2.i.b. aplikatuz: p = -qG L2 /2k C C2 = p + qG L2 /2k Paretan barneko tenperatura-distribuzioa (x) = -qG (L2 -x2 ) /2k + p
10
Q = Qx = L + Qx = -L = 2AL qG = V qG
Fourier-en legea aplikatuz: Qx = - k A = -k A d/dx = -k A ( -qGx/k ) Qx= A qG x Paretatik kanpo guzira transmititutako bero-jarioa: Q = Qx = L + Qx = -L = 2AL qG = V qG
11
2. Kasua: pareta laua bero-garapenik gabe
k 2 + qG = cp /t 1 (x) Kasu honetan qG = 0 k 2 = 0 2 2 = d2 /dx2 = 0 d/dx = C1 (x) = C1 x + C2 Q x L 1.ingurune baldintza: x = = 1 2. Ingurune baldintza: x = L = 2 Ordezkatuz: (x) = (2 - 1) x/L + 1
12
Ohm-en legea Fourier-en legea
Fourier-en legea aplikatuz: Qx = - k A = -k A d/dx = -k A C1 = Q = k A ( 1 - 2 )/ L Analogia elektrikoa: Ohm-en legea Fourier-en legea I = V2-1 / R Q = 2-1 / (L / k A ) Pareta lauaren erresistentzia termiko baliokidea: RTP = L / k A I 1 2 Q V1 V2 k L R
13
1 Q 4 Q 1 Q Q 2 Pareta konposatuak: k1 k2 R1 R2 R3 k3 L1 L2 L3
Q = ( 1 - 4 )/ ( R1 + R2 + R3 ) k1 R1 1 Q Q k2 R2 2 k3 R3 L Q = ( 1 - 2 ) x ( 1/R1 +1/ R2 + 1/R3 )
14
3. Kasua: pareta zilindrikoa bero-garapenarekin
k 2 + qG = cp /t R r z p Q qG = ( r, ,z,t ) Errejimen egonkorra Fluxu unidimentsionala = ( r ) k 2 + qG = 0 k2 + qG = 0 = k [1/r d(rd/dr)/dr] + qG 1/r d(rd/dr)/dr = -qG/k d(rd/dr)/dr = - r qG/k rd/dr = - r2 qG/2k + C d/dr = - r qG/2k + C1/r (r) = - r2 qG/4k + C1 lnr + C2
15
z 1.ingurune baldintza: r= 0 qr=0 d/dr = 0
2. Ingurune baldintza: r = R = p 1.i.b. aplikatuz: d/dr = C1 = 0 2.i.b. aplikatuz: p = -qG R2 /4k C C2 = p + qG R2 /4k z Ordezkatuz: (r) = p + qG ( R2 - r2 ) /4k p r Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 2 r L ( - r qG/2k ) = L r2 qG Qr = L r2 qG = V qG = QG
16
4. Kasua: pareta zilindrikoa bero-garapenik gabe
1 2 Q r1 k 2 + qG = cp /t Kasu honetan qG = 0 k 2 = 0 2 = 0 = [1/r d(rd/dr)/dr] r 1/r d(rd/dr)/dr = 0 d(rd/dr)/dr = 0 rd/dr = C d/dr = C1/r (r) = C1 lnr + C2 1.ingurune baldintza: r= r = 1 2. Ingurune baldintza: r = r = 2
17
1.i.b. aplikatuz: 1 = C1 lnr1 + C2
C1 = ( 1 - 2 ) / ln ( r1 / r2 ) C2 = 1 - lnr1 [( 1 - 2 ) / ln ( r1 / r2 )] (r) = [( 1 - 2 ) / ln ( r1 / r2 )] lnr + 1 - lnr1 [( 1 - 2 ) / ln ( r1 / r2 )] (r) = [( 1 - 2 ) ln ( r / r1 ) / ln ( r1 / r2 )] + 1 1 r 2
18
Q Fourier-en legea aplikatuz:
Qr = - k A = -k A d/dr = -k 2 r L( 1 - 2 ) / r ln ( r1 / r2 ) = Qr = ( 1 - 2 ) / [ ln ( r2 / r1 ) / 2 k L ] Pareta zilindrikoaren erresistentzia termiko baliokidea: RTZ = ln ( r2 / r1 ) / 2 k L Pareta konposatuak: R1 R2 r1 r2 r3 Q R1 = ln ( r2 / r1 ) / 2 k1 L R2 = ln ( r3 / r2) / 2 k2 L
19
5.Kasua: pareta esferikoa bero-garapenarekin
k 2 + qG = cp /t = ( r, ,z,t ) Errejimen egonkorra Jario unidimentsionala R = ( r ) k2 + qG = 0 = k [1/r2 d(r2d/dr)/dr] + qG 1/r2 d(r2d/dr)/dr = -qG/k d(r2d/dr)/dr = - r2 qG/k r2d/dr = - r3 qG/3k + C d/dr = - r qG/3k + C1 / r2 (r) = - r2 qG/6k - C1 / r + C2 1.ingurune baldintza: r = qr= d/dr = 0 2. Ingurune baldintza: r = R = p
20
Q 1.i.b. aplikatuz: d/dr = 0 C1 = 0
2.i.b. aplikatuz: p = -qG R2 /6k C C2 = p + qG R2 /6k Ordezkatuz: (r) = p + qG ( R2 - r2 ) /6k Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 4 r2 (- r qG/3k ) = 4/3 ( r3 ) qG Qr = 4/3 ( r3 ) qG = V qG = QG Q
21
6. Kasua: pareta esferikoa bero-garapenik gabe
k 2 + qG = cp /t r2 r1 2 = 0 = 1/r2 d(r2d/dr)/dr d(r2d/dr)/dr = 0 r2d/dr = C d/dr = C1 / r2 (r) =C1 / r + C2 1.ingurune baldintza: r= r = 1 2. Ingurune baldintza: r = r = 2 1.i.b. aplikatuz: 1 = C1 /r1 + C2 2.i.b. aplikatuz: 2 = C1 / r2 + C2 C1 = ( 1 - 2 ) / ( 1/r1 - 1/r2 ) C2 = 1 - ( 1 - 2 ) / r1 ( 1/r1 - 1/r2 )
22
(r) =C1 / r + C2 = ( 1 - 2 ) / r ( 1/r1 - 1/r2 ) + 1 - ( 1 - 2 ) / r1 ( 1/r1 - 1/r2 ) =
Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 4 r2 ( 1 - 2 ) / r2( 1/r1 - 1/r2 ) = Qr = ( 1 - 2 ) / [( 1/r2 - 1/r1 )/ 4 k ] Pareta esferikoaren erresistentzia termiko baliokidea: RTE = ( 1/r2 - 1/r1 )/ 4 k = ( r2 -r1 )/ [r2 r1 4 k ] r2 r1 RTE Q I
23
KONBEKZIOA Fluidoaren molekulen arteko distantzia handia dela eta, kondukzio bidezko bero-transmisioarekiko erresistentzia termikoa handia da. Molekulen arteko loturak aulak izanik, bero dagoen molekula fluidoan barne mugi daiteke, berarekin batera energia termikoa garraiatuz bero-transmisioa. Materia garraio bitartez gertatzen den bero-transmisio mekanismo honi KONBEKZIO deritzaio.
24
Konbekzio bidezko bero-transmisioa, faktore askoren araberakoa da:
Jariakinaren abiadura ( c ) Ukipen-azaleraren geometria eta ezaugarriak Jariakinaren propietate fisikoak ( , ) Solidoaren propietate fisikoak ( k , cp ) etab. Denak laburbiltzeko, koefiziente bat erabiltzen da: h = konbekzio-koefiziente edota pelikula-koefizientea. h pelikula-koefizientea, korrelazio esperimentalen bitartez kalkulatzen da.
25
Newton-en hozketa-legea:
Q = h A Newton-en hozketa-legea: h ( W/m2K) Analogia elektrikoa: R Q I h R = 1 / h A
26
U : Bero-transmisio koefiziente orokorra
h2 k L 2 1 h1 k b R1 R2 R3 Q KONBEKZIOA KONDUKZIOA KONBEKZIOA R = R1 + R2 + R3 = 1/A ( 1/h1 + L/k + 1/h2 ) Q = ( b - k ) / R = A ( b - k ) / [ 1 / h1 )+ L / k + 1 / h2 ] U =1 / [ 1 / h1 )+ L / k + 1 / h2 ] Q = U A
27
h2 h1 R1 R2 R3 Q KONBEKZIOA KONDUKZIOA KONBEKZIOA R = R1 + R2 + R3 = 1/2L ( 1/r1h1 + 1/k ln(r2/r1) + 1/r2h2 ) Q = ( b - k ) / R = 2 r2 L ( b - k ) / [ (r2 / r1 h1 )+ ( r2 / k )ln(r2/r1) + 1 / h2 ] Q = U2 A2 U2 =1 / [ (r2 / r1 h1 )+ ( r2 / k )ln(r2/r1) + 1 / h2 ]
28
KONBEKZIO BEHARTUA Reynolds zenbakia: Jariakinaren inertzia indarren eta liskatasun indarren arteko erlazioa. Re = c / Prandtl zenbakia: Jariakinean barne beroa zein abiaduraz transmititzen den adierazten du. Pr = cP / k Nusselt zenbakia: jarikaina eta paretaren arteko bero-transmisioa adierazten du. Nu = h / k Parametro hauen arteko erlazioa esperimentalki lortu behar da, ereduekin entsaiatuz. Nu = f ( Re,Pr )
29
ZENBAIT KORRELAZIO ESPERIMENTAL
1.kasua: Tutueria baten barnekaldeko konbekzioa, jarioa zurrunbilotsua denean. = 4A/Pbustita = D c c n=3 hoztutzen bada n= 4 berotzen bada Dittus-Boelter Nu = 0,023 Re 0,8 Pr n D.B. aplikatzeko baldintzak: - Re >2100 (zurrunbilotsua) - parametro adimentsionalak jariakinaren batazbesteko tenperaturan
30
2.kasua: Gainazal lau batean zeharreko konbekzio behartua.
xkr Parametroak pelikula- -batazbesteko tenperaturan neurtuak: m = ( p + f ) / 2 = L Re < 5·104 5·105 Fluxu laminarra NuL = 0,664 ReL 1/2 Pr 1/3 L xkr Fluxu zurrunbilotsua Re > 5·104 5·105 Nu = 0,036 ReL0,8 Pr 1/3 L xkr Fluxu mistoa Nu = 0,036 Pr 1/3 (ReL0, ) L xkr
31
3.kasua: Zilindro baten kanpokaldeko gainazalarekiko korronte gurutzatu baten konbekzio behartua.
c = D Parametroak pelikula- -batazbesteko tenperaturan neurtuak: Churchill-Bernstein Nu = 0,3+ [(0,62 Re1/2Pr 1/3)/ [1+(0,4/Pr)2/31/4 · [1+(Re/ )1/2 4.kasua: Esfera baten kanpokaldeko gainazalarekiko korronte gurutzatu baten konbekzio behartua. = D Whitaker Nu = 2+(0,4Re1/2+0,06Re2/3)Pr0,4
32
KONBEKZIO NATURALA Konbekzio bidezko bero-trukea egoteko beharrezkoa den jariakinaren mugimendua, tenperatura-diferentzia batek eragindako dentsitate-diferentziaren ondorioz gertatzen denean, konbekzio naturala deritzaio. Erabiliko diren parametro adimentsionalak, Nu, Pr, eta Grashof zenbakia dira. Grashof zenbakia: Jariakinaren igotze indarren eta liskatasun indarren arteko erlazioa. Gr = g32 / 2 Gas idealetan : = 1/T Grashof zenbakia handiagoa den neurrian, handiagoa izango da jariakinaren mugimendu librea
33
Gr·Pr > 108 jario zurrunbilotsua
1.kasua: Zilindro horizontal baten kanpokaldeko gainazalarekiko konbekzio naturala. = D 104< Gr <109 h = 1,32 [ (-f) / D ]1/4 109< Gr <1012 h = 1,25 (-f)1/3 = gainazal tenperatura f = jariakinaren tenperatura 2.kasua: Plaka bertikal baten gainazalarekiko konbekzio naturala. = L 104< Gr <109 h = 1,42 [ (-f) / L ]1/4 109< Gr <1012 h = 1,31 (-f)1/3
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.