Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
1
Wireless channels
2
Wireless channel models
There are two distinct fading models for the wireless channel 1 path 0 multipath delay frequency flat fading channel Multiple paths frequency selective fading channel
3
Received Signal Multipath delays occur as a transmitted signal is reflected by objects in the environment between a transmitter and a receiver.
4
Received Signal Multipath delays causes intersymbol interference (ISI) in the received symbols, because time dispersion occurs where the energy from one symbol spills over into other symbols. Example: delay spread = 7 symbol times Received signal is given by linear convolution of transmit signals with the impulse response of the channel. s1 s2 s3 s4 s5 s6 s7 h0 x s1 s2 s3 s4 s5 s6 s7 h1 x s1 s2 s3 s4 s5 s6 s7 h2 x
5
Received signal Frequency Flat fading channel (narrowband systems) Frequency selective channel (wideband systems) Each multipath component is typically associated with different time delay and attenuation, the shortest of which is the LOS path.
6
Received signal in a flat fading channel
In a frequency flat fading channel (or narrowband system), the CIR (channel impulse response) reduces to a single impulse (just one path from tx to receiver) scaled by a time-varying complex coefficient: h(t)~Gauss(0, 1/2)+ j Gauss(0, 1/2) The received (equivalent lowpass) signal is of the form α(t) is the magnitude of h(t) (usually α(t) has Rayleigh pdf) h(t) is constant for many symbol intervals Phase θ(t) varies slowly and can be tracked
7
Instantaneous SNR for non-diversity system
System model Signal power Noise power Instantaneous SNR: (signal power / noise power)
8
Maximum likelihood (ML) decision rule
Received signal with fading h and AWGN n ML multiplies all possible symbols with h, and selects the one symbol that is ‘closer’ (minimum Euclidean distance) to the received signal y where is the estimated symbol. ML: Find which symbol when multiplied with channel weight h is “closer” to the received signal y.
9
Maximum Likelihood Detection (MLD) with fading
Signal at (single) receive antenna ML decision rule at the receiver: choose signal si iff: (A) where is the squared Euclidean distance between (x,y) Let us evaluate the term
10
Maximum Likelihood Detection (MLD) with fading
ML decision rule at the receiver: choose signal si iff: Signal processing at the receiver: we compute Note that (A)
11
Detection in flat fading
… is very easy …!!! Έστω h είναι ο συντελεστής του καναλιού, s είναι το εκπεμπόμενο σύμβολο και n είναι ο θόρυβος Equivalent with the previous ML detection is the following Ισοδύναμα: Η επίδραση του καναλιού διορθώνεται με το να πολλαπλασιάσουμε το λαμβανόμενο σύμβολο με h* και να κανονικοποιήσουμε διαιρώντας με την ισχύ του καναλιού
12
Discrete time signal modeling
In all communication systems, we assume a sampling frequency Fs, which is related to the transmit bandwidth In the time domain, the signal samples are separated in time by the sampling time Usually we assume that the multipath components appear in time instants that are multiples of Ts. The frequency response of a multipath channel is given by with , where τmax is the maximum delay spread of the channel, and ω=2πf/Fs.
13
Frequency response of channel
The frequency response of the channel is usually sampled in N frequencies in the frequency interval [0 – Fs). The frequency spacing is then given by Fs/N. Using digital frequencies, which map the interval [0 – Fs)[0, 2π), the frequency spacing in digital radian frequency is 2π/Ν. The sampled frequency response at ω=2πk/N, k=0,1,…, N-1, is given by the Discrete Fourier Transform (DFT)
14
Frequency response of 1 path channel
Assuming L=1 path channel, h(n) = h(0), it is easy to see that it results in a frequency flat channel As we will show later, each path h(n) is the summation of signal replicas with random amplitude and phase that arrive almost at the same delay. The resultant signal is statistically modeled as a complex Gaussian signal and its amplitude follows the Rayleigh probability density function (pdf).
15
Frequency flat channel
h_flat = (randn(1,1)+i*randn(1,1))/sqrt(2); % complex Gaussian N=64; H = fft(h_flat, N); % frequency response of channel response b = abs(H); % magnitude of frequency response plot(b, '-o') plot([1:N], b, '-o') xlabel('subcarrier index') ylabel('frequency response‘)
16
Discrete time signal modeling
Παρατηρήστε ότι η απόκριση συχνότητας της κρουστικής απόκρισης ενός πολυδιαδρομικού καναλιού είναι όπου L είναι το μήκος της κρουστικής απόκρισης τmax είναι η μέγιστη καθυστέρηση του καναλιού (maximum delay spread) H δειγματοληψία της Η(ω) για ω=2πk/N, , είναι ο DFTΝ{h(n)} δηλαδή
17
Frequency selective channel: time domain
p=[0.5, 0.3, 0.2, 0.1]; % multipath power profile h(1) = sqrt(p(1))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(2) = sqrt(p(2))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(3) = sqrt(p(3))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(4) = sqrt(p(4))*(randn(1,1)+i*randn(1,1))/sqrt(2); h = [h(1), 0, h(2), h(3), 0, 0, h(4)]; %multipath delay profile stem(abs(h)); xlabel('path number, n') ylabel('abs(h)')
18
Frequency selective channel: frequency response
N=64; H = fft(h, N); % frequency response of last channel response b = abs(H); % magnitude of frequency response plot(b, ‘-o’) xlabel('subcarrier index') ylabel('frequency response')
19
Coherence bandwidth of channel
We define the coherence bandwidth as the range of frequencies over which two frequency components have a strong potential for amplitude correlation. This determines whether the fading is flat or frequency selective. The coherence bandwidth (Bc) between two frequency envelopes is given as Frequency components of a signal separated by more than Bc will fade independently. A channel is a frequency-selective channel if Bc < Bw, where Bw is the signal bandwidth.
20
Doppler spread in wireless channels
Whenever relative motion exists between transmitter and receiver, there is a Doppler shift in the received signal. The maximum Doppler shift fd is given by Fading power για fd = 50 Hz.
21
Doppler spread in wireless channels
Fading power για fd = 160 Hz.
22
Coherence time of channel
The coherence time, Tc, describes the expected time duration over which the impulse response of the channel stays relatively constant. The coherence time is approximately inversely proportional to Doppler spread If the transmitted symbol interval, Ts, exceeds Tc, then the channel will change during the symbol interval and symbol distortion will occur. If signal symbol time Ts <<Tc the channel does not change during the symbol interval. This case is called slow fading.
23
Statistical description of wireless channels
24
Narrowband wireless multipath channel
Έστω ότι το σήμα εκπομπής είναι ένα απλό ημιτονοειδές σήμα στη συχνότητα του φέροντος (μη διαμορφωμένο σήμα στην fc): Το λαμβανόμενο σήμα δίνεται ως (αγνοώντας για λίγο τον θόρυβο)
25
Narrowband wireless multipath channel
όπου ai είναι η εξασθένιση (attenuation) της i-th multipath συνιστώσας θi είναι η αλλαγή φάσης (phase-shift) της i-th multipath συνιστώσας Θεωρούμε ότι οι Ν1 συνιστώσες φτάνουν σχεδόν ταυτόχρονα, οπότε αυτό που παρατηρείται στο δέκτη είναι μόνο το συνισταμένο σήμα. Οι όροι ai και θi είναι τυχαίες μεταβλητές (random variables). Η παραπάνω έκφραση μπορεί να αναλυθεί στις δύο ορθογώνιες συνιστώσες {cos, -sin} του φέροντος: Επίσης αν εισάγουμε δύο τυχαίες διαδικασίες (random processes) X1(t) και X2(t) μπορούμε να γράψουμε:
26
Narrowband wireless multipath channel
Αν το Ν1 είναι αρκετά μεγάλο (μεγάλος αριθμός από scattered waves είναι παρόντα), και χρησιμοποιώντας το Central Limit Theorem, μπορούμε να προσεγγίσουμε τα X1(t) και X2(t) με Gaussian random variables με zero mean και variance σ2. Η προηγούμενη σχέση γίνεται: όπου το πλάτος της διάλειψης του καναλιού (channel fading) R(t) δίνεται ως και η ισχύς της διάλειψης του καναλιού
27
PDF of sum of Gaussian random variables
If X1, ..., Xk are k independent Normal random variables ~G(0, 1), then the sum of their squares, is distributed according to the chi-squared distribution with k degrees of freedom. This is usually denoted as The chi-squared distribution has one parameter: k — a positive integer that specifies the number of degrees of freedom (i.e. the number of Xi’s). PDF is given by
28
PDF of sum of 2 Gaussian random variables
For k=2, is the exponential distribution For the Rayleigh distribution follows chi-squared with 2 degrees of freedom that is, exponential distribution: Z = R2 (dZ = 2R dR)
29
Statistical description of fading
Όταν οι X1(t) και X2(t) είναι Gaussian random variables with equal variances σ2, η R(t) είναι Rayleigh distributed random variable με μέση ισχύ Ω = Ε[R2] = 2 σ2 : Η φάση του σήματος λήψης θ(t) δίνεται ως όπου αφού οι X1(t) και X2(t) είναι Gaussian random variables μπορεί να δειχτεί ότι η θ(t) είναι uniform distributed random variable με PDF:
30
Received signal in a flat fading channel
In a frequency flat fading channel (or narrowband system), the CIR (channel impulse response) reduces to a single impulse (just one path from tx to receiver) scaled by a time-varying complex coefficient: h(t)~Gauss(0, 1/2)+ j Gauss(0, 1/2) The received (equivalent lowpass) signal is of the form α(t) is the magnitude of h(t) (α(t) has Rayleigh pdf) h(t) is constant for many symbol intervals Phase θ(t) varies slowly and can be tracked
31
BER vs. Average SNR (cont.)
Fading h varies with time SNR γ varies with time Let us define instantaneous SNR and average SNR:
32
BER vs. Average SNR (cont.)
Since using we get Rayleigh distribution Exponential distribution
33
Fading Models Rayleigh: Η κατανομή Rayleigh χρησιμοποιείται συχνά σε multipath fading μοντέλα χωρίς LOS, δηλαδή χωρίς απευθείας διαδρομή. Σε αυτή την περίπτωση το πλάτος του καναλιού διάλειψης R είναι random variable με PDF (Σχήμα 1a): όπου δηλώνει τη μέση ισχύ της διαδρομής λήψης, που είναι το άθροισμα όλων των ανακλωμένων διαδρομών που φτάνουν με την ίδια καθυστέρηση. Επομένως, το στιγμιαίο SNR ανά σύμβολο, είναι τώρα μία random variable με PDF chi-squared που δίνεται από όπου
34
PDF of SNR with Rayleigh fading
Proof : finding the pdf of PDF of R
35
Rayleigh amplitude pdf and Exponential power
Pdf of random variable R that follows Rayleigh distribution Pdf of γb =R2Eb/N0 Average received SNR Es/N0 = Pr(d) / N depends on distance d!!! according to link budget.
36
Frequency Response of multipath channel
37
Ισοδύναμο Μοντέλο OFDM (1/2)
38
Ισοδύναμο Μοντέλο OFDM (2/2)
Η ανάκτηση γίνεται στο πεδίο της συχνότητας (στο δέκτη μετά από τον FFT). Η ανάκτηση γίνεται με απλή αντιστροφή διαύλου (Zero Forcing linear receiver)
39
ZF and MMSE OFDM receiver
Zero Forcing MMSE where is the k-th element of the DFT of the channel impulse response is the variance of the noise.
40
Received OFDM symbol and channel
Παίρνοντας επομένως στο δέκτη το DFT του y[n] (χωρίς θόρυβο) έχουμε: Επομένως, τo k σύμβολo εκπομπής εμφανίζεται στην k έξοδο του DFT πολλαπλασιασμένο με την απόκριση του πολυδιαδρομικού καναλιού στην συχνότητα
41
PDF of H(k), k=0,1,…,N-1 Παρατηρήστε ότι η απόκριση συχνότητας της κρουστικής απόκρισης ενός πολυδιαδρομικού καναλιού είναι όπου L είναι το μήκος της κρουστικής απόκρισης τmax είναι η μέγιστη καθυστέρηση του καναλιού (maximum delay spread) H δειγματοληψία της Η(ω) για ω=2πk/N, , είναι ο DFTΝ{h(n)} δηλαδή
42
PDF of H(k), k=0,1,…,N-1 clear; Fs = 10*10^6; % sampling frequency AND signal bandwidth L=3; % multipath fading N=64; % total number of carriers – FFT length bins=50; carrier_no = 22; % select any sub-carrier form 1-N (=64) p = [0.5, 0.3, 0.2]; % declare power delay profile NN=10000; for m=1:NN % find the amplitude of the frequency response h(1) = sqrt(p(1))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(2) = sqrt(p(2))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(3) = sqrt(p(3))*(randn(1,1)+i*randn(1,1))/sqrt(2);
43
PDF of H(k), k=0,1,…,N-1 h = [h(1), 0, h(2), 0, h(3)]; % consider a multipath delay profile % τ = [ ] nsec, since Ts=1/Fs = 100 nsec H = fft(h, N); % channel frequency response H0 = abs(H); % magnitude of frequency response H0_no(m)=H0(carrier_no); % pick amplitude of carrier_no m end figure(2) % Make histogram of H0_no [nfreq xoutfreq]=hist (H0_no, bins); bar(xoutfreq, nfreq / (NN* (max(xoutfreq) /bins) ) ) axis ([ ] )
44
PDF of H(k), k=0,1,…,N-1 g = findobj (gca, 'Type' , 'patch' ) ; set (g, 'FaceColor', 'r' , 'LineStyle', ':' , 'EdgeColor', 'w' ) hold on y = raylpdf ( [0 : 0.1 : 3] , 1/sqrt(2)) ; x=0 : 0.1 : 3 ; plot (x, y, '* ' )
45
Multipath channel in the frequency domain
Show that the multipath channel results in selective fading clear; Fs = 10*10^6; % sampling frequency AND signal bandwidth L=3; % multipath fading N=64; % total number of carriers – FFT length p = [0.5, 0.3, 0.2]; % declare power delay profile h(1) = sqrt(p(1))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(2) = sqrt(p(2))*(randn(1,1)+i*randn(1,1))/sqrt(2); h(3) = sqrt(p(3))*(randn(1,1)+i*randn(1,1))/sqrt(2);
46
Multipath channel in the frequency domain
h = [h(1), 0, h(2), 0, h(3)]; % consider the multipath delay profile H = fft(h, N); % frequency response of last channel response b = abs(H); % magnitude of frequency response plot(b, ‘-o’) xlabel('subcarrier index') ylabel('frequency response')
47
Multipath channel in the frequency domain
Παρατηρήστε ότι η απόκριση συχνότητας της κρουστικής απόκρισης του καναλιού με δειγματοληψία στις ψηφιακές γωνιακές συχνότητες ω = 2πk/N, , (ισοδύναμα αναλογικές συχνότητες f= kFs/N, ) είναι ο DFTΝ{h(n)}, έχει διαφορετικά πλάτη στα διάφορα k (υποφέροντα) frequency selective fading !!! Αυτό χρησιμοποιείται για την ανάθεση υποφερόντων σε διαφορετικούς χρήστες στο σύστημα πολλαπλής πρόσβασης χρηστών OFDMA.
48
Multipath channel in the frequency domain
Κάθε χρήστης θα έχει μία απόκριση καναλιού, όπως φαίνεται στο παρακάτω σχήμα: subchannel frequency magnitude carrier channel
49
Resource (frequency bins) allocation
Ο Σταθμός Βάσης γνωρίζει την απόκριση συχνότητας του καναλιού κάθε χρήστη και προσπαθεί να δώσει υποφέροντα k {0,1,…, N-1} σε κάθε χρήστη στα οποία το πλάτος έχει υψηλές τιμές. User 1 User K frequency magnitude Base Station - has knowledge of each user’s channel state information thru ideal feedback from the users User 2 . . .
50
Resource (frequency bins) allocation
Ο τρόπος με τον οποίο κάθε χρήστης επιτυγχάνει να στείλει τα σύμβολα του σε συγκεκριμένα υποφέροντα (από τα Ν υποφέροντα σε ένα εύρος φάσματος 0 – Fs (Hz)), είναι να εισάγει τα σύμβολα εκπομπής μόνο στις εισόδους του IDFT που αντιστοιχούν στα υποφέροντα εκπομπής και 0 αλλού. Π.χ. για να στείλει δεδομένα στα πρώτα 8 υποφέροντα (από Ν=64), 8 σύμβολα εκπομπής θα εισέλθουν στις εισόδους 0-7 ενός IDFT με μήκος (αριθμό εισόδων) Ν=64. Με αυτό τον τρόπο, κάθε χρήστης εκπέμπει σε διαφορετικά υποφέροντα. Στο Δέκτη, χρησιμοποιείται ένας DFT με μήκος Ν, ενώ κάθε χρήστης λαμβάνει ΜΟΝΟ τα σύμβολα που του αντιστοιχούν, δηλαδή στο προηγούμενο παράδειγμα, θα “πάρει” μόνο τα πρώτα 8 σύμβολα (από τα Ν=64) της εξόδου του DFT. Ένας δεύτερος χρήστης μπορεί να λάβει τα επόμενα 8, κ.ο.κ.
51
Example of OFDMA with 2 users
Tx 1 Tx 2 IFFT(X,N) First N/2 symbols belong to #1 Next N/2 symbols belong to #2 FFT(Y,N) IFFT(X,N)
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.