ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
… όταν η ταχύτητα αλλάζει
Advertisements

ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ.
27 Νοέμβρη 2002.
Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
Μαθηματικοί Υπολογισμοί Χειμερινό Εξάμηνο η Διάλεξη Δημιουργία Συναρτήσεων με Ημιτονοειδή Δεκέμβρη 2002.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
9 Οκτώβρη 2002.
Εκπαιδευτής: Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
ΠΕΔΙΟ ΡΟΗΣ ΡΕΥΣΤΟΥ Ροή Λάβας Ροή Νερού
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 5) 1 Τυχαία συνάρτηση Μία τυχαία συνάρτηση (ΤΣ) είναι ένας κανόνας με τον οποίο σε κάθε αποτέλεσμα ζ.
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 7
Γιάννης Σταματίου Τεχνικές αντιστροφής γεννητριών συναρτήσεων Webcast 7.
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
3) Αριθμητικές Μέθοδοι Συστήματα μη-γραμμικών διαφορικών εξισώσεων με μερικές παραγώγους δεν μπορούν να λυθούν με τις γνωστές αναλυτικές μεθόδους. Για.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Κεφάλαιο 2 Κίνηση σε μία διάσταση
Δίνεται συρμάτινο πλέγμα μήκους 10 μέτρων. Να περιφράξετε με αυτό ένα οικόπεδο, (με το μεγαλύτερο εμβαδόν), σχήματος ορθογωνίου! Ορίζουμε ως: X: Μήκος.
1. Ευθύγραμμη κίνηση. Ένα σώμα κινείται πάνω σε μια ευθεία.
ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΕΔΙΟΥ ΡΟΗΣ
Μερικές Διαφορικές Εξισώσεις ΙΙ
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
ΥΛΗ ΚΑΙ ΚΙΝΗΣΗ Η κίνηση είναι χαρακτηριστική ιδιότητα της ύλης. Κίνηση παρατηρούμε από τους μακρινούς γαλαξίες έως μέχρι το εσωτερικό των ατόμων. Η.
Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 12: Σχήματα ανώτερης τάξης Χειμερινό εξάμηνο 2008.
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
JPEG Μια τεχνική συμπίεσης ακίνητης εικόνας. Η Τεχνική JPEG Αφορά συμπίεση ακίνητων εικόνων Είναι τεχνική συμπίεσης με απώλειες Το πρόβλημα είναι η εκάστοτε.
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
Μετασχηματισμός Fourier
Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
Ενότητα 8η: Η ΕΛΑΣΤΙΚΗ ΓΡΑΜΜΗ
 Ένα σώμα κινείται πάνω σε μια ευθεία.  Από μια θέση πάει σε μια άλλη.  Πως θα μελετήσουμε την κίνηση; 1. Ευθύγραμμη κίνηση.
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
Υπολογιστική Ρευστομηχανική Ενότητα 5: Χρονικά Μεταβαλλόμενη Διάχυση Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Κ Υ Μ Α Τ Ι Κ Η.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Υπολογιστική Ρευστομηχανική Ενότητα 4: Εξίσωση Διάχυσης Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Μερκ. Παναγιωτόπουλος-Φυσικός 1 Η έννοια της ταχύτητας.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων
Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή
Θεωρία Σημάτων και Συστημάτων 2013
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II
Διάλεξη 15: O αλγόριθμος SIMPLE
Επιβλέπων Καθηγητής: Δρ Θ. Κοσμάνης
Διάλεξη 4: Εξίσωση διάχυσης
ΜΑΘΗΜΑ: ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΣΑΡΡΗΣ ΙΩΑΝΝΗΣ
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
Εισαγωγή στο Γραμμικό Προγραμματισμό
Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ.
Μερκ. Παναγιωτόπουλος-Φυσικός
ΦΑΣΗ φ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
ΑΥΤΟΣΥΝΕΠΗ ΜΟΝΤΕΛΑ ΙΣΟΡΡΟΠΙΑΣ ΣΥΜΠΑΓΩΝ ΑΣΤΕΡΩΝ ΜΕ ΤΟΡΟ ΠΥΚΝΗΣ ΥΛΗΣ
Μη Γραμμικός Προγραμματισμός
Μεταγράφημα παρουσίασης:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008

Προηγούμενη παρουσίαση... Ολοκληρώσαμε την συζήτηση για τα σχήματα UDS/CDS Εξετάσαμε την ακρίβεια των σχημάτων UDS/CDS Είδαμε την έννοια της ψευτοδιάχυσης

Οργάνωση παρουσίασης Θα εξετάσουμε μερικά σχήματα πρώτης τάξης που στηρίζονται στην ακριβείς λύση της εξίσωσης αγωγής- συναγωγής » Εκθετικό σχήμα » Υβριδικό σχήμα » Σχήμα Power-law Θα δούμε την μη-μόνιμη εξίσωση συναγωγής για να καταλάβουμε την σημασία της διάχυσης και της διασποράς

Πρώτης τάξης σχήματα βασισμένα σε ακριβείς λύσεις Έστω η μονοδιάστατη εξίσωση αγωγής-συναγωγής:

Εκθετικό σχήμα Χρησιμοποιώ την ακριβής λύση σε μία διάσταση ως υπόθεση για το προφίλ της ποσότητας (όπως έχω χρησιμοποιήσει και το γραμμικό προφίλ) και προχωρώ στην διακριτοποίηση Αν θεωρήσω την εξίσωση αγωγής-συναγωγής: Ολοκληρώνοντας στον όγκο ελέγχου:

Εκθετικό σχήμα (συνέχεια) Έχοντας τα διανύσματα των πλευρών και πολλαπλασιάζοντας με την ροή: Εκφράζουμε τους όρους συναγωγής και αγωγής με βάση την ακριβείς λύση:

Εκθετικό σχήμα : Διακριτές ιδιότητες Και οι δύο όροι, αγωγής και συναγωγής, έχουν προσδιοριστεί από την ακριβείς λύση Αν S = 0, μπορούμε να έχουμε την ακριβείς λύση σε προβλήματα μίας διάστασης Η λύση δεν μπορεί να είναι ακριβείς στη περίπτωση όπου το S είναι διάφορο από το μηδέν, για πολυδιάστατα προβλήματα… Η διακριτοποίηση οδηγεί σε φραγμένες λύσεις με κυρίαρχη διαγώνιο Είναι μόνο πρώτης τάξης ακρίβειας

Υβριδικό σχήμα διακριτοποίησης Για τον συντελεστή του a E στο υβριδικό σχήμα Υπάρχουν όρια σε σχέση με τον αριθμό Pe:

Προσεγγίσεις στο υβριδικό σχήμα Ο υπολογισμός των εκθετικών συναρτήσεων στοιχίζει πολύ (υπολογιστικός χρόνος) Συνήθως κάνουμε προσεγγίσεις στο εκθετικό προφίλ για να ελαττώσουμε το κόστος. » Σχήμα υβριδικών διαφορών » Σχήμα Power-law Και οι δύο προσεγγίσεις είναι μόνο πρώτης τάξης ακρίβειας

Υβριδικό σχήμα (συνέχεια) Αντί να χρησιμοποιούμε την ακριβείς καμπύλη για να προσεγγίζουμε το a E /De, χρησιμοποιούμε τρεις εφαπτόμενες: Ομοίως χειριζόμαστε και τους άλλους όρους

Υβριδικό σχήμα (συνέχεια) Υπάρχει εγγύηση ότι η λύση θα είναι φραγμένη Το κριτήριο Scarborough ικανοποιείτε Η ακρίβεια είναι τάξης O(Δx)

Το σχήμα Power-Law Εφαρμόζει προσέγγιση πολυωνύμου πέμπτης τάξης Χρησιμοποιεί παρόμοια προσέγγιση και για τους άλλους συντελεστές Το σχήμα είναι φραγμένο και ικανοποιεί το κριτήριο Scarborough Έχει ακρίβεια τάξης O(Δx)

Σχήματα για προβλήματα πολλών διαστάσεων Οι αναλυτικές λύσεις έχουν χρησιμοποιηθεί ως προσεγγίσεις του προφίλ σε προβλήματα πολλών διαστάσεων Εκεί έχει στηριχθεί και η μέθοδος των πεπερασμένων στοιχείων με βάση τους όγκους ελέγχου (Control volume-based finite element method, Baliga and Patankar(1983)) Αυτή η σχέση δίνει την λύση της εξίσωσης συναγωγής-αγωγής σε δύο διαστάσεις

Σχήματα για προβλήματα πολλών διαστάσεων και Σχήμα πεπερασμένο αναλυτικό (Finite analytic scheme, Chen and Li, 1979) Γράφουμε την εξίσωση διάχυσης σε κάθε ‘στοιχείο’ σε δύο διαστάσεις με όρο πηγής: Αναπτύσσουμε τους συντελεστές με βάση τις τιμές στα (i,j) Βρίσκουμε την αναλυτική λύση χρησιμοποιώντας διαχωρισμό μεταβλητών Χρησιμοποιούμε τις ακριβείς λύσεις για τις προσεγγίσεις στα προφίλ της μεταβλητής

Εξίσωση μη μόνιμης συναγωγής Για απλότητα θα χρησιμοποιήσουμε την γραμμική εξίσωση κύματος: Υποθέτουμε ότι το υπολογιστικό πεδίο είναι μονοδιάστατο και έχει μήκος L=1. Αρχικές συνθήκες: Λύση: Πόσο καλά μπορεί το αριθμητικό μας σχήμα να βρει τη λύση; Κινούμενο κύμα Εξίσωση αγωγής- συναγωγής με Γ=0, ρ=1 και u=σταθερό

Μορφές κυμάτων Ημιτονοειδές κύμα Τετραγωνικό κύμα Για u>0, το κύμα μετατοπίζεται προς τα δεξιά κατά (ut) σε χρόνο t. Για u=1 και t=0.25, η μετατόπιση είναι 0.25 μονάδες

Ρητό σχήμα κεντρικών διαφορών Αν υποθέσουμε ένα ομοιόμορφο πλέγμα σε μία διάσταση Ολοκληρώνουμε στον όγκο ελέγχου: Μπορούμε να δείξουμε ότι έχει ακρίβεια τάξης O(Δx 2, Δt) Σταθερό χωρίς περιορισμούς – όχι εύχρηστο Όροι συναγωγής στο παλιό χρόνο

Άρητο σχήμα κεντρικών διαφορών Ολοκληρώνουμε στον όγκο ελέγχου Μπορούμε να δείξουμε ότι έχει ακρίβεια τάξης O(Δx 2, Δt) Είναι πάντα σταθερό Δεν υπάρχει εγγύηση ότι είναι φραγμένο επειδή τα πρόσημα των γειτονικών σημείων είναι μικτά Όροι συναγωγής στο νέο χρόνο

Ρητό σχήμα απάνεμων διαφορών Ολοκληρώνουμε στον όγκο ελέγχου Η λύση είναι σταθερή για: Ορίζουμε τον αριθμό Courant ν= uΔt/Δx Συνθήκη CFL Μερικές φορές καλείται αριθμός CFL από τους Courant, Friedrichs και Lewy

Ρητό σχήμα απάνεμων διαφορών (συνέχεια) Η διακριτή εξίσωση μπορεί να ξαναγραφτεί ως: Η λύση είναι φραγμένη πάντα όταν ν<1

Ρητό σχήμα απάνεμων διαφορών (συνέχεια) Αρχίζουμε με ημιτονοειδές ή τετραγωνικό κύμα σε χρόνο t = 0. Επιλέγουμε πλέγμα 50 κελιών και χρονικό βήμα τέτοιο ώστε να ισχύει ν=0.5. Σχεδιάζουμε το αποτέλεσμα μετά από 25 χρονικά βήματα.

Συζήτηση Η λύση που υπολογίζουμε μετακινείται προς τα δεξιά όπως περιμένουμε Το προφίλ του κύματος μεταβάλλεται – εξομαλύνεται στο χώρο Αλλά δεν υπάρχουν μεγάλες διαφορές στις μέγιστες / ελάχιστες τιμές » Η λύση είναι μονοτονική » Η λύση είναι κλεισμένη από τις αρχικές συνθήκες για Courant number <1

Ρητό σχήμα απάνεμων διαφορών: Ανάλυση λάθους Βρίσκουμε την εξίσωση μοντέλου για το ρητό σχήμα απάνεμων διαφορών UDS: Άρα το παραπάνω σχήμα εμπεριέχει διάχυση Προσέξτε ότι το λάθος του πρώτου όρου είναι τάξης O(Δx,Δt) Επιπλέον όρος τεχνητής διάχυσης που συνδέεται με τον αριθμό Courant

Ρητό και άρητο σχήμα κεντρικών διαφορών: Ανάλυση λάθους Εξίσωση μοντέλου για το ρητό σχήμα CDS: Εξίσωση μοντέλου για το άρητο σχήμα CDS: Σημειώστε ότι ο αρνητικός συντελεστής στη διάχυση είναι υπεύθυνος για την αστάθεια Επίσης, ο όρος της ψεύτικης διάχυσης κάνει την χρονική ολοκλήρωση να ευνοεί τη διάχυση

Σχήμα Lax-Wendroff Είναι το κλασικό σχήμα για την αριθμητική λύση της γραμμικής εξίσωσης κύματος Ξεκινάμε από την εξίσωση μοντέλο του ρητού σχήματος κεντρικών διαφορών (CDS) Προσπαθούμε να κάνουμε σταθερό το ρητό σχήμα CDS αντισταθμίζοντας το αρνητικό συντελεστή διάχυσης της Έτσι το σχήμα Lax-Wendroff αρχίζει με:

Σχήμα Lax-Wendroff (συνέχεια) Διακριτοποιούμε την εξίσωση ρητά χρησιμοποιώντας CDS: Μπορούμε να δείξουμε ότι το σχήμα είναι σταθερό για: Εφαρμόζουμε κεντρικές διαφορές για τον όρο:

Κίνηση κύματος Τα μέρη του κύματος που είναι ομαλά προσεγγίζοντας πολύ καλά, αλλά σχηματίζονται περίεργες μορφές κοντά σε ασυνέχειες.

Εξίσωση μοντέλο για το σχήμα Lax-Wendroff Εξίσωση μοντέλο: Στη μετάδοση κύματος η διασπορά είναι υπεύθυνη για την μεταβολή της συχνότητας που μεταφέρεται από το σήμα. Μπορούμε να σκεφτούμε το προφίλ σαν να αποτελείτε από σειρά Fourier. Το αριθμητικό σχήμα μεταφέρει διαφορετικές συχνότητες με διαφορετικές ταχύτητες αλλάζοντας το σχήμα του σήματος – “Λάθος φάσης (phase error)” Σημειώστε, όρος διασποράς και όχι όρος διάχυσης

Συζήτηση Τα σχήματα διασποράς δουλεύουν καλά για κύματα με ομαλό σχήμα, πχ. Όταν δεν υπάρχουν πάρα πολλές συχνότητες (ένα κύμα ημίτονου) Οι ασυνέχειες δείχνουν ότι υπάρχει ένα άπειρος αριθμός συχνοτήτων » Τα λάθη φάσης μεταβάλουν τη συχνότητα σε κάθε χρονικό βήμα » Αυτός είναι ο λόγος που το κύμα σχήματος τετραγώνου αλλοιώνεται τόσο πολύ Χρησιμοποιώντας το ρητό σχήμα UDS, από την άλλη, χάνουμε σε ένταση, αλλά δεν εισάγουμε λάθη φάσης

Σχήμα Lax-Wendroff: περισσότερα προβλήματα Έστω η διακριτή εξίσωση: Αναδιανέμοντας: Για μόνιμη κατάσταση: Ροές συναγωγής και (ψευτο) διάχυσης στις πλευρές e και w στο περασμένο χρόνο Παρατηρείτε κάτι περίεργο;

Προβλήματα (συνέχεια) Διακριτή εξίσωση σε μόνιμη ροή Σημειώστε ότι κανένα άλλο από τα σχήματα που έχουμε δει δεν έχει τέτοιου είδους ανεπιθύμητη εξάρτηση ! Η λύση στη μόνιμη κατάσταση εξαρτάτε από το Δt! Άρα ανάλογα με το χρονικό βήμα που επιλέξαμε μπορεί να έχουμε διαφορετικές μόνιμες λύσεις

Επίλογος Στη παρούσα διάλεξη Εξετάσουμε μερικά σχήματα πρώτης τάξης που στηρίζονται στην ακριβείς λύση της εξίσωσης αγωγής-συναγωγής » Εκθετικό σχήμα » Υβριδικό σχήμα » Σχήμα Power-law Είδαμε την μη-μόνιμη εξίσωση συναγωγής και καταλάβουμε την σημασία της διάχυσης και της διασποράς