PMSM的问题 控制比直流伺服电机要复杂的多; 要想实现力矩控制,必须有角位置传感器,以测量d-q坐标系的旋转角; 反电势必须是正弦波的,这对电机制造及工艺提出了较高的要求。 反电势必须是正弦波的才能产生正弦电流
3.3 无刷直流电动机 (Brushless Direct Current Motor ,BLDC) 1、无刷直流电动机结构 2、无刷直流电动机工作原理 3、无刷直流电动机电机特性 4、PWM控制技术
1. 结构 由定子、转子、位置传感器及换相电路组成 定子采用叠片结构并在槽内铺设绕组的方式 定子绕组多采用三相并以星形方式连接
将永磁体贴装在非导磁材料表面或镶嵌在其内构成。 大部分BLDC采用表面安装方式。 多为2到3对极的。 磁性材料多采用具有高磁通密度的稀土材料,如銣铁硼等
结构上BLDC与PMSM有些相似,但有两点不同:
附:电角度和机械角度 机械角度是指电机转子的旋转角度,由Θm表示; 电角度是指磁场的旋转角度,由Θe表示。 当转子为一对极时,Θm=Θe; 当转子为n对极时,Θe=nΘm。
2. 工作原理 1)旋转磁场的产生 假定电机定子为3相6极,星型连接。转子为一对极。
电流方向不同时,产生的磁场方向不同。 若绕组的绕线方向一致,当电流从A相绕组流进,从B相绕组流出时,电流在两个绕组中产生的磁动势方向是不同的。
6步通电顺序 1.A+B- 2.C+B- 3.C+A- 4.B+A- 5. B+C- 6.A+C- 三相绕组通电遵循如下规则: 每步三个绕组中一个绕组流入电流,一个绕组流出电流,一个绕组不导通; 通电顺序如下: 1.A+B- 2.C+B- 3.C+A- 4.B+A- 5. B+C- 6.A+C-
6步通电顺序 1.A+B- 2.C+B- 3.C+A- 4.B+A- 5. B+C- 6.A+C- 每步磁场旋转60度,每6步旋转磁场旋转一周; 每步仅一个绕组被换相。
6步通电顺序 随着磁场的旋转,吸引转子磁极随之旋转。 磁场顺时针旋转,电机顺时针旋转:1→2→3→4→5→6 磁场逆时针旋转,电机顺时针旋转:6→5→4→3→2→1 1.A+B- 2.C+B- 3.C+A- 4.B+A- 5. B+C- 6.A+C-
2)如何实现换相? 1.A+B- 2.C+B- 3.C+A- 4.B+A- 5. B+C- 6.A+C- 必须换相才能实现磁场的旋转,如果根据转子磁极的位置换相,并在换相时满足定子磁势和转子磁势相互垂直的条件,就能取得最大转矩。 要想根据转子磁极的位置换相,换相时就必须知道转子的位置,但并不需要连续的位置信息,只要知道换相点的位置即可。 在BLDC中,一般采用3个开关型霍尔传感器测量转子的位置。由其输出的3位二进制编码去控制逆变器中6个功率管的导通实现换相。
开关型霍尔传感器 霍尔元件+信号处理电路=霍尔传感器 利用霍尔效应,当施加的磁场达到“动作点”时,OC门输出低电压,称这种状态为“开”; 基于这个原理,可制成接近开关。
如果将一只霍尔传感器安装在靠近转子的位置,当N极逐渐靠近霍尔传感器即磁感应强度达到一定值时,其输出是导通状态; 当N极逐渐离开霍尔传感器、磁感应强度逐渐减小时,其输出仍然保持导通状态;只有磁场转变为S极并达到一定值时,其输出才翻转为截止状态。 在S-N交替变化磁场下,传感器输出波形占高、低电平各占50%。 如果转子是一对极,则电机旋转一周霍尔传感器输出一个周期的电压波形,如果转子是两对极,则输出两个周期的电压波形。
直流无刷电机中一般安装3个霍尔传感器,间隔120度或60度按圆周分布。 如果间隔120度,则3个霍尔传感器的输出波形相差120度电角度; 输出信号中高、低电平各占180度电角度。 如果规定输出信号高电平为“1”,低电平为“0”,则输出的三个信号可用3位二进制编码表示。
如果间隔60度,则输出波形相差60度电角度。 间隔120度与60度的二进制编码是不同的。 100 000 001 011 111 110 100 000 001 011 111 110 如果间隔60度,则输出波形相差60度电角度。 间隔120度与60度的二进制编码是不同的。
例:假定定子绕组为3相,转子为2对极,3个霍尔传感器间隔 60度按圆周分布,由6只晶体管组成的桥式电路给电机供电,分析其换相过程。 1.A+C- 2.A+B- 3.C+ B- 4.C+A- 5.B+A- 6. B+C- 从霍尔传感器输出的二进制编码控制6个功率管的导通,可由逻辑电路实现,也可由软件编程实现。
1.A+B- 2.A+C- 3. B+C- 4. B+A- 5.C+ A- 6 .C+B- 每相绕组中电流是正负交替的 由逆变器提供与电动势严格同相的方波电流
直流有刷电机绕组中的电流实际上也是正负交替的 ,只是从电刷外部看电流是单方向的。 直流有刷电机通过换向机构换向,直流无刷电机通过霍尔开关及逆变器换相。
3)如何实现力矩的控制? 按照电机统一规律,必须保证θs-θr为90度,才能取得最大转矩。 因旋转磁场是60度增量,看来无法实现这个关系。 但通过适当的安排可实现平均90度的关系。 如果每一步都使离转子磁极120度的定子磁势所对应的绕组导通,并且当转子转过60度后换相,如此重复每一步,则可使定子磁势与转子磁势相差60-120度,平均90度。
每一个定子绕组回路与DC电机电枢回路是类似的。 但其电压和电流都是在每半个电周期中仅导通120度。 电机制作时保证其绕组内反电势为梯形波,但平顶部分与电压和电流同时出现,其极性也与电压和电流一致。 从功率平衡的角度考虑 Tω=EaIa+EbIb+EcIc 又因为E=Keω,且在所有的时间都有两相绕组流过相同电流, T=2KeIa 可见,力矩与定子绕组电流成正比,改变电流即改变力矩。 BLDC电机
力矩的波动 换相转矩脉动:每次换向时,由于绕组电感的作用电流不能突变,电流的过渡过 程 产生力矩波动。 由于转矩存在波动,限制了它在高精度的速度、位置控制系统中的应用。
4)如何实现速度的控制? 改变定子绕组电压的幅值即能改变电机速度。
3、电机特性 在BLDC电机中,力矩正比于电流,速度正比于电压,反电势正比于电机转速,因此其控制特性与机械特性均与直流电机基本相同。
BLDC电机的机械特性曲线 在连续工作区,电机可被加载直至额定转矩Tr. 在电机起停阶段,需要额外的力矩克服负载惯性。这时可使其短时工作在短时工作区,只要其不超过电机峰值力矩Tp且在特性曲线之内即可。
4、PWM控制技术 为了使BLDC 电机速度可变,必须在绕组的两端加可变电压。 利用PWM控制技术,通过控制PWM 信号的不同占空比,则绕组上平均电压可以被控制,从而控制电机转速。 在控制系统中采用DSP或单片机时,可利用器件中的PWM产生模块产生PWM波形。 根据转速要求设定占空比,然后输出6路PWM信号,加到6个功率管上。 以dsPIC30F2010单片机为例:
dsPIC30F2010的PWM 模块
当下桥臂的功率管由导通到关断时,上桥臂的功率管延时一段时间再由关断到导通,以防止桥臂直通。 这个延时时间称为”死区”。 死区可通过编程改变。
MCPWM的PWM时基模块中有一个专用的16位PTMR计数器和一个PTPER 数字寄存器,PTMR对定时时钟计数,PTPER中置入的数字确定了PWM信号的周期。PTMR计数器启动计数后,其计数值与PTPER中置入的数字值比较,两者一致时,就输出一个周期的PWM信号。改变PTPER的值,就可以方便的改变计数的周期,这样就可以改变PWM波形的频率。 PWM 发生器#中PDC数字寄存器中置入的数字确定了PWM信号的占空比。比较器将设定的比较值PDC*:与PTMR计数值相比较,产生PWM波形的跳变。只要实时改变比较器的值,就可以改变单位周期内高电平或者低电平的脉冲宽度,产生占空比可调的PWM波形。 通过占空比比较产生的三个输出将被分别传输给死区置入及输出寄存器,可以在高电平变低与低电平变高之间插入一段死区。以防止输出驱动器发生意外的直通现象。 特殊函数寄存器OVDCOND中的各位 直接控制6个PWM输出通道。当位为1时,已建立的占空比信号出现在该位所对应的输出通道上,当位为0时,其输出被禁止。
OVDCOND寄存器的值由霍尔传感器输出的二进制编码绕组通电顺序决定。 A+C- A+B- C+B- C+A- B+A- B+C-
例1 由单片机控制的BLDC系统:
例2 单片三相无刷直流电动机控制器SI9979
SI9979特点 霍尔传感器输入信号处理,60及120度间隔选择,提供霍尔传感器电源。 自动换相功能 集成逆变器高端驱动 PWM输入及处理 电流限制,欠电压保护 20到40电源电压
例3: 由DSP控制的BLDC系统
BLDC的特点 与DC电机比较:由于没有电刷的机械摩擦,使其具有高可靠性、高效率、免维护、无噪声、高速度范围、容易散热等优点。 与ASMS电机比较:控制简单,成本低。 力矩波动比DC电机及ASMS电机大。 适应于对制造成本较敏感,而对性能要求不是特别高的场合。
思考题 说明BLDC的旋转磁场是如何产生的 与直流伺服电机和交流永磁伺服电机比较,直流无刷伺服电机有什么特点?