对流传热系数测定实验.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
退 出 退 出 上一页 下一页 一、零件图中尺寸标注的基本要求 §7-7 零件图中尺寸的合理注法 零件图的尺寸,应注得符合标准、齐全、清晰和合理。 合理标注尺寸的要求: ⑴ 满足设计要求,以保证机器的质量, ⑵ 满足工艺要求,以便于加工制造和检验。 要达到这些要求,仅靠形体分析法是不够的,还必须掌握一定的.
Advertisements

量子力学 第四章 力学量与算符. 第二章中,求 的平均值时,引入了算符概念: 将这一概念推广,得量子力学的第四个基本假定: * 任一力学量 A ,对应于一力学量算符 即, 那么: 1. 量子力学中算符的一般定义是什么? 2. 算符之间如何运算? 3. 与力学量 A 对应的算符 与数学上的一般算符有何异同?
一、 截面选择 第七节 组合梁设计 先估算梁的高度h 腹板的高度hw 和厚度tw 翼缘的宽度b 和厚度t。 1、 梁截面高度h
学习要点: 高频功放的分类 高频丙类谐振功放的特性 高频功放的分类和特点 高频功放的分类和特点 高频丙类功放的工作原理 高频丙类功放的工作原理 高频丙类功放的特性 高频丙类功放的特性 退出.
实验二 流量计校正 即离心泵综合实验 化工原理实验教学研究室. 为满足化工生产工艺的要求, 一定流量的流体需远距离输送, 或者从低处送到高处,或者从低 压处送至高压处,因此必须向流 体提供能量,需要时也对流体的 流量进行测量与控制。 化工原理实验教学研究室.
蔬菜中 有机磷和氨基甲酸酯类 农药残留量快速检测 — 酶抑制率法 ( 分光光度法 ) 陈夏琴.
关于经典磁化率模型的完整表示与推广 物理二班 张中扬 PB
第六章 无限长脉冲响应数字滤波器的设计. 第六章学习目标  理解数字滤波器的基本概念  了解模拟滤波器的设计方法  掌握 Butterworth 、 Chebyshev 低通滤波器的特点  了解利用模拟滤波器设计 IIR 数字滤波器的设计 过程  掌握由模拟滤波器设计数字滤波器的冲激响应不.
实验七 RLC 串联电路的幅频特性和谐振 一、实验目的 l 、研究 RLC 串联电路的幅频特性(也就是谐 振曲线) 2 、研究串联谐振现象及电路参数对谐振特性 的影响。
有限长螺线管串联等效电感的计算 芮雪 4系2001级.
1 第四章 模拟调制系统 4.1 引言 4.2 幅度调制 4.3 非线性调制 4.4 频分复用 4.5 复合调制及多级调制的概念.
实验四 常用电子仪器的使用 一. 实验目的 1. 了解示波器的工作原理。 2. 初步掌握示波器的正确使用方法。练习 正确实用示波器,信号源及交流毫伏表。
热工测量仪表 动力机械的转速、转矩和功率测量. 意义 转速、转矩和功率 —— 描述动力机械运转 状况的关键数据,性能的重要技术参数 转速、转矩和功率 —— 描述动力机械运转 状况的关键数据,性能的重要技术参数 涉及到国民经济各部分 涉及到国民经济各部分 科学技术的进步 —— 动力机械的高速发 展 ——
1 第七章 模拟信号的数字传输 7.1 引言 7.2 抽样定理 7.3 脉冲振幅调制 7.4 模拟信号的量化 7.5 脉冲编码调制 7.6 增量调制.
实验三 过滤试验 化工原理实验教学研究室. 过滤是分离非均相混合物的 方法之一。 本实验装置主要测定给定物 料在一定操作条件和过滤介质时 的过滤常数。 化工原理实验教学研究室.
第6章:集成DAC和ADC的原理与组成 §6-1 集成数模转换器(DAC) §6-2 集成模数转换器(ADC) §6-3 应用举例
声速的测量 声速的测量 【实验简介】 【实验简介】 声波是在弹性媒质中传播的一种机械波、纵波,其在 媒质中的传播速度与媒质的特性及状态等因素有关。 通过媒质中声速的测量,可以了解被测媒质的特性或 状态变化,因而声速测量有非常广泛的应用,如无损 检测、测距和定位、测气体温度的瞬间变化、测液体 的流速、测材料的弹性模量等。
填料吸收塔的操作 及 吸收传质系数的测定 主讲教师:.
指示剂概述 一、酸碱滴定中的指示剂酸碱滴定中的指示剂 二、络合滴定中的指示剂络合滴定中的指示剂 三、氧化还原滴定中的指示剂氧化还原滴定中的指示剂.
生物化学实验之五 枯草芽孢杆菌蛋白酶活力的测定 食品与生物工程学院 王章存.
《中国药典》 1 国外药典简介 2 药检工作的基本程序 3 第二章 药典概况. 第一节 中国药典 一、基本概念 1. 药品质量标准 国家对药品质量及检验方法所作的技术规定, 是药品生产、 经营、使用、检验和监督管理部门共同遵循的法定依据。 2. 药典 ① 记载药品质量标准的法典; ② 国家监督、管理药品质量法定技术标准;
第四讲 核与粒子的非点结构 4.1 基本研究方法 4.2 类点粒子弹性散射的微分截面 4.3形状因子和核素的电荷分布
§ 1-5 直线与平面的相对位置 两平面的相对位置 §1-5-1 直线与平面平行 两平面平行 §1-5-1 直线与平面平行 两平面平行 §1-5-2 直线与平面的交点 两平面的交线 §1-5-2 直线与平面的交点 两平面的交线 §1-5-3 直线与平面垂直 两平面垂直 §1-5-3 直线与平面垂直.
2.3 周期序列的离散傅里叶级数及傅里叶变换 2.4 离散时间信号的傅里叶变换与模拟信号傅里叶变换之间的关系
6.5 数字高通、带通和带阻 滤波器的设计. 设计思路  我们已经学习了模拟低通滤波器的设计方法,以 及基于模拟滤波器的频率变换设计模拟高通、带 通和带阻滤波器的方法。对于数字高通、低通和 带阻的设计,可以借助于模拟滤波器的频率变换 设计一个所需类型的模拟滤波器,再通过双线性 变换将其转换成所需类型的数字滤波器,例如高.
板框过滤实验 实验指导教师:. 过滤概述 一般地,化工生产中所遇到的混合物可分为两大类, 即均相混合物和非均相混合物。其中非均相混合 物包括固 -- 液混合物 ( 如悬浮液 ) 等,其特点是体系 内具有明显的两相界面,可用一般的机械方法进 行分离,如过滤方法。 过滤是以某种多孔介质来处理悬浮液的操作。在外.
第六节 离心泵的特性曲线 水泵的性能参数,标志着水泵的性能。水泵各个性能参数之间的关系和变化规律,可以用一组性能曲线来表达。对每一台水泵而言,当水泵的转速一定时,通过试验的方法,可以绘制出相应的一组性能曲线,即水泵的基本性能曲线。 一般以流量Q为横坐标,,用扬程H、功率N、效率η和允许吸上真空度Hs为纵坐标,绘Q~H、Q~N、Q~η、Q~
第 14 章 RNA 的生物合成 ---- 转录 RNA Biosynthesis----Transcription.
第八讲 2.6 利用Z变换分析信号和系统的频域特性.
实验二 基尔霍夫定律 一、实验目的 1. 验证基尔霍夫电流定律、电压定律。 2. 加深对电路基本定律适用范围普遍性 的认识。 3. 进一步熟悉常用仪器的使用方法。
液体表面张力系数的测定 实验目的: 1 、 用拉脱法测量室温下水的表面张力系数。 2 、学习焦利氏秤的使用方法,掌握用焦利氏秤测量微小 力的方法。 仪器与用具: ①焦利氏秤,②金属环,③砝码,④温度计,⑤游 标卡尺,⑥螺旋测微器,⑦被测液体 — 自来水等。 物理实验中心.
实验五 简单正弦交流电路的研究 一、实验目的 1. 研究正弦交流电路中电压、电流的大小与 相位的关系。 2. 了解阻抗随频率变化的关系。 3. 学会三压法测量及计算相位差角。 4. 学习取样电阻法测量交流电流的方法。 二、实验原理说明 ( 略 )
第五章 呼 吸 呼吸 ( respiration ) 机体与外界环境之间的气体交换过程 呼吸 外呼吸 内呼吸 气体在血液中的运输 肺通气 肺换气.
核 磁 共 振 兰州理工大学物理实验室.
1. 2 第一节 成形工艺中的冶金反应特点 3 液态成形的化学冶金过程主要发生在金属的熔炼阶 段。主要的物理化学反应为金属的氧化、金属的脱 磷、脱碳、脱氧、脱硫和合金化等。 金属熔炼过程中温度较低,约在 1600 ℃以下。温度 变化范围不大,液态金属的体积较大,熔炼时间较 长,冶金反应进行的较充分和完全,可采用物理化.
第三章 金属凝固热力学与动力学 第三章 凝固热力学与动力学.
第十三章 抽样原理和方法. 本章主要讨论了抽样的概念、抽样的原 则、几种主要的抽样方法;样本含量 的确定.
第七讲 2.5序列的Z变换.
疑难解析 受控源.
1 第 8 章 数字信号的最佳接收 8.1 数字信号接收的统计表述 8.2 最佳接收的准则 8.3 最佳接收机的抗干扰性能.
习 题 精 解 2-1 试判断下列各电路图对正弦交流电压信 号有无放大作用?为什么?. 习 题 精 解 解: 无放大作用,因为 电源 Vcc 极性不对。 无放大作用,因为无 基极偏置电流。
第三章 土壤有机质的测定
实验一 基本电工仪表及测量误差 一、实验目的 1. 熟悉基本电工仪表的种类。 2. 了解万用表的种类及主要技术 指标。 3. 万用表内阻对测量结果的影响。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十八讲 ) 离散数学. 定理 设 M 的元数为 n, 若 n>1 , 则奇置换的个数和偶置换的个数相 等,因而都等于 n!/2 。 证明:命 τ 1,τ 2, …,τ m ( 5 ) 为 M 的所有偶置换, 由于 n>1,
模拟电子技术习题 (部分) 教材:《模拟电子技术基础》(第四版) 华中理工大学 康华光主编 制作:安徽理工大学电气工程系 黄友锐.
 3.1 金属材料塑性变形机制与特点 3.1 金属材料塑性变形机制与特点3.1 金属材料塑性变形机制与特点  3.2 屈服现象及本质 3.2 屈服现象及本质3.2 屈服现象及本质  3.3 真应力 - 应变曲线及形变强化规律 3.3 真应力 - 应变曲线及形变强化规律3.3 真应力 - 应变曲线及形变强化规律.
洞道干燥曲线 测定实验 指导教师:.
9 第九章 欧几里得空间 学时: 18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容:欧几里得空间定义与基本性质;标准正交基;同构;正 交变换;子空间;对称矩阵的标准形;向量到子空间的距离、最小 二乘法。  教学目的:  欧几里得空间定义与基本性质。
第十七讲 3. 切比雪夫滤波器的设计方法 4. 模拟滤波器的频率变换 模拟 高通、带通、带阻滤波器的设计.
热工测量仪表 —— 热流测量. 背景 : 在热力设备的研究和运行中,除了测量温 度参数外,往往还需要测量热流密度。 例如 : 需测量火焰在单位时间内以辐射或辐射和 对流两种方式传至某单位面积上的热量,炉墙 和热力管道在单位时间和单位面积上向外散失 的热量,等等。 测量单位时间内单位面积上通过热量的仪表叫.
二维灵敏3He中子探测器的研制 高能所实验物理中心MDC组 王小胡
奇异曲面高斯通量的讨论 物理一班 野仕伟 1. 非封闭曲面的通量计算 — 投影法 平方反比场 E=A r/r 3 有 一特殊性质,即对两面元 dS 1, dS 2, 若对场源 O 张有相 同立体角 dΩ, 则 dS 1,dS 2 的通 量相等。 从而,任意曲面 S 0 , 对 O 张 Ω 的立体角,投影到.
● 以机械能衡算方程为基础的测定方法,应用公式: 1.6 流速和流量测定 ● 流体的速度和流量测定是一个重要的测量参数; ● 测量用的方法和流量计的种类很多。
交流电枢绕组的磁动势 重点讨论的问题: 要求: 单相绕组磁动势——脉振磁动势 三相绕组合成磁动势——旋转磁动势
2.3 土 壤 水 分. 土壤水:是一种稀薄的溶液,存在于 土粒的表面和土粒间的孔隙中。 三种吸引力: 土粒的吸附; 毛管引力; 重力.
PMSM的问题 控制比直流伺服电机要复杂的多; 要想实现力矩控制,必须有角位置传感器,以测量d-q坐标系的旋转角;
§7-3 检波器 学习要点: 掌握检波原理及检波器的构成 了解几种检波器的特点和适用范围 掌握大信号峰值检波器的惰性失真及 负峰切割失真.
第六讲 PCB 设计制作 电子技术基础训练部.  概述  PCB 设计  PCB 制作 电子技术基础训练部.
第五节 刚体的转动 掌握:角速度、角加速度、转动定律、角动量守恒定律 第一章 力学基本定律 理解:角动量、转动惯量.
项目二:电气设备的绝缘预防性试验与监测 学习情境二:电气设备的绝缘耐压试验 掌握交流耐压试验所用的仪器和设备、接线及试验方法。 掌握直流流耐压试验所用的仪器和设备、接线及试验方法。 了解冲击耐压试验试验。 教学目标.
SOUTHWESTJIAOTONG UNIVERSITY 学生个性化创新型实验 高 芳 清 基于桥梁结构静、动力行为的 西南交通大学力学实验教学中心.
第二节 钢在冷却时的转变 一、过冷奥氏体的等温冷却转变
活性炭处理硝基酚废水实验. 实 验 目 的 实 验 目 的 实 验 目 的 实 验 目 的 l 熟悉活性炭的结构; l 了解活性炭在水处理中的作用与原理; l 学会污染物定量分析方法; l 掌握活性炭脱除废水中有机污染物的应用技 术。
第二章 手机常要元器件的识别 一 、电阻(在电路中代号为 R ) 1 .电阻在电路中的作用:分压和限流 2. 电阻的阻值读取方法:电阻标识 abc__abc×10c 次 比如标识 103 的电阻,其阻值为 10×10 的 3 次 =10KΩ.
2012 高考阅卷体会 对规范答题的启示 对规范答题的启示 温州十四中蔡秀华 2012/10/18.
实验五 单相整流滤波及并联稳压电路 1 、加深理解二极管整流电路和工作原理。 2 、进一步认识并联稳压电路中各元件的作用。 二、实验线路 一、 实验 目的 注意电容的极性 V~ Vi VRVR C R RLRL DWDW ~220v V ~ ~ VLVL.
1. 实验目的 2. 预习要求 3. 实验仪器 4. 实验原理 5. 实验内容 6. 思考题 7. 答案 上海科学技术职业学院.
热传导机理 气体:温度不同的相邻分子相互碰撞,造成热量传递。 液体:分子间作用力较强,由相邻分子振动导致热传递。 固体:相邻分子的碰撞或电子的迁移。 基本概念和傅立叶定律 ( 1 )温度场 所研究的具有一定温度分布的空间范围。 4.2 热传导(导热) 在温度差的驱动下,通过分子相互碰撞、分子振动、电子.
项目五 槽 加 工 任务 2 复合固定循环 G75 切宽槽 1 .掌握径向沟槽复合循环 G75 的指令格式。 5 .完成切槽加工,掌握精度控制方法,并进行误差分析。 2 .正确理解 G75 指令段内部参数的意义,能根据加工要求合 理确定各参数值。 3 .掌握切槽加工工艺。 4 .运用 G75 指令编写宽槽加工程序。
8.1 概述 8.2 数 / 模( D/A )转换器 8.3 模 / 数( A/D )转换器 退 出 第 8 单元 数 / 模、模 / 数转换.
Μεταγράφημα παρουσίασης:

对流传热系数测定实验

对流传热概述 根据热力学第二定律,凡是存在温度差的地方就会发生热量传递,并导致热量自发地从高温处向低温处传递,这一过程称为热量传递过程,简称传热。 热量传递过程分为稳态过程与非稳态过程两大类。 热量传递有三种基本方式:热传导、对流和热辐射。 在化工生产中传热的应用主要是两个方面: 1.强化传热:为了使物料达到操作温度的要求进行的加热或冷却,希望热量以所期望的速率进行传递; 2.削弱传热:为了使物料或设备减少热量散失,而对管道或设备进行保温或保冷。

对流传热的概念 在工业生产中,传热过程基本方式: 1.直接接触式传热 2.间壁式传热:是一种常用的换热设备,如列管式换热器。其热流体借助于传热壁面,将热量传递给冷流体。 3.蓄热式传热。(图例) 影响换热器传热速率的参数有:传热面积、平均温度和传热系数。

对流传热的概念 不同温度的流体各部分之间,或流体与固体壁面之间作整体相对位移时所发生的热量传递过程,称为对流传热。 影响对流传热的因素: (1)流体的相态变化; (2)引起流动的原因(强制对流传热和自然对流传热); (3)流体的流动型态(层流和湍流); (4)流体的物理性质(包括流体的比热容、导热系数、密度和黏度等); (5)传热面的几何因素(传热面的形状、大小等)。

对流传热分类:

流体流动排布型式 1.逆流型式 2.并流型式 3.错流型式 4.折流型式

逆流型式

并流型式

错流型式

折流型式

实验目的 1.通过实验掌握总传热系数K及对流传热系数α的测定方法,并分析影响因素; 2.学习如何用实验方法求出描述过程规律的经验公式,并检验通用的对流传热系数的准数关联式 或 ; 3.通过实验提高对关联式的理解,进一步了解影响对流传热系数的因素和强化传热的途径; 4.掌握测温热电偶的使用方法。

实验原理 根据传热基本方程、牛顿冷却定律以及圆筒壁的热传导方程,已知传热设备的结构尺寸,只要测得传热速率Q以及各有关温度,即可算出K和α等。

间壁式换热装置 对于间壁式传热过程,可以将其看成是由下述三个传热子过程串联而成: (1)热流体与固体壁面之间的对流传热过程; (2)热量通过固体壁面的热传导过程; (3)固体壁面与冷流体之间的对流传热过程。

1.计算热负荷(热流量)Q 热量衡算方程式: 通过测定qc、t1、t2可计算出Q。 式中:qc---空气的体积流量(m3/h); ρc---空气的密度(kg/m3); CPc---空气的定压比热容(J/(kg·K))或(J/(kg·℃)); t1---空气进换热器的温度(K或℃); t2---空气出换热器的温度(K或℃)。 通过测定qc、t1、t2可计算出Q。

2.计算总传热系数K 由传热基本方程式 得: 其中: 式中:K---基于管内表面积的总传热系数(W/(m2·℃)); A---换热管内表面积(m2); ∆tm---换热器冷热流体的对数平均温差。

3.计算对流传热系数α 依据牛顿冷却定律: 或 其中: 式中: αc、αh ---分别为冷、热流体的平均对流传热系数(W/(m2·℃)); Ac、Ah---分别为冷、热流体的传热面积,即与流体接触的壁面积(m2); ∆tmc、 ∆tmh---分别为冷、热流体与壁面(或反之)间温差的平均值(℃)。

管内强制对流传热 当流体在圆形直管内作强制对流传热时,研究表明,Nu与Pr和Re之间存在如图3--1所示的关系。 图3-1 流动状况与对流传热系数的关系

由图可见: 管内强制对流存在三个不同的区域: 当Re<2300时,流体的流动为层流状态;

流体在圆形直管内 作湍流时的对流传热系数 其关联式可采用迪图斯-贝尔特公式描述,即 (经验式为 ) (经验式为 ) 式中:Nu---努塞乐特准数,Nu=αid/λ ; Re---雷诺准数,Re=duρ/μ ; Pr---普朗特准数,Pr=CP· μ/λ; A、m、n---常数。 当流体被加热时,n=0.4;当流体被冷却时,n=0.3。 上式适用于流体与管壁温差不大的场合,对于气体,其温差不超过50℃ ;对于水,温差不大于20-30℃ ;对于黏度随温度变化较大的油类其值不超过10℃ 。上式的其他适用的条件为:Re=1.0×104~1.2×105,Pr=0.7~120,管长与管内径之比l/d≥60。所采用的特征长度为管内径d,定性温度为流体的平均温度(即管道进、出口截面平均温度的算术平均值)。

当温差超过推荐的温差范围或对于黏度较高的液体,由于管壁温度与流体的主体温度不同而引起壁面附近与流体主体处黏度相差较大,如果采用迪图斯--贝尔特公式,则计算的误差较大,因此可采用齐德-泰特公式进行计算,即 式中的特征长度为管内径d;定性温度为流体的平均温度;μw 表示是以管壁温度选取的流体黏度。上式适用范围:Re≥104;Pr=0.7~16700,管长与管内径之比l/d≥60。 当液体被加热时,取 当液体被冷却时,取

对于短管(管长与管径之比l/d<50)内的强制对流传热,由于其全部或绝大部分的管段处于热边界层尚未充分发展的入口段。因此,在计算对流传热系数时应进行入口效应的修正,即 式中:α为采用上式计算的对流传热系数; α/为流体流经短管的平均对流传热系数。

流体在圆形直管内 呈过渡流时的对流传热系数 管内流动处于过渡流状态,即在2300<Re<104的范围内,其传热情况比较复杂。在此情况下的对流传热系数可先用湍流时的经验关联式计算,然后将计算所得到的对流传热系数再乘以小于1的修正系数,即 式中:α为采用湍流时的经验关联式计算的对流传热系数; α/为过渡流状态下的对流传热系数。

流体在圆形直管内 作层流时的对流传热系数 流体在圆形直管中作层流强制对流传热的情况比较复杂,因为附加的自然对流往往会影响层流对流传热。只有在小管径,且流体与管壁的温度差别不大的情况下,即Gr<25000时,自然对流的影响才能忽略。 式中:除了μw 外,定性温度均取流体的平均温度,特征长度为管内径d。 适用范围: 且管壁处于均匀壁温。

当Gr>25000时,可按上式计算对流传热系数,然后再乘以修正系数得到

流体在圆形直管内 作湍流时的A、m常数的确定 流体在圆形直管内作湍流时的关联式: 即改写为 根据不同流速下测得有关数据,算出准数Nu、Pr和Re的值,用图解法在双对数坐标纸上作Nu/Prn~Re关系曲线图,即可得出A、m的值。

实验装置 及流程 物系: 空气(冷流体)-蒸汽(热流体) 测定管长度:L=1300mm, 管内径: di =18mm 管壁厚:

实验步骤 1.先打开加热电源开关,待上壁温开始升温后,打开空气电源开关,并调节转子流量计为20 。 1.先打开加热电源开关,待上壁温开始升温后,打开空气电源开关,并调节转子流量计为20 。 2.待套管表面发热,打开套管底端法兰下的排气拷克2~3次,排除不凝性气体。 3.打开冷流体(小)系统的冷却水开关,保证冷流体进口温度恒定。 3.整个实验操作控制蒸汽压力恒定在0.04Mpa以下某一刻度,待热流体进口温度恒定后,改变唯一操作变量即空气转子流量计阀门开度,达到改变流速的目的。 5.待冷流体出口温度显示值保持5min以上不变时方可同时采集实验数据。 6.实验结束时,先关加热电源,保持空气继续流动10min,以足够冷却壁温,保护热电偶接促正常。 7.上机数据处理的直线相关系数要求R≥0.93,否则,实验重做。

实验记录及数据处理 1、原始数据记录表 实验装置号: ,di=18mm,δ=2mm,L=1.3m No. 蒸汽 压力 MPa 温度 ℃ 空气 流量 m3/h 空气进口温度 空气出口温度 下壁温 上壁温 1 2 3 4 5 6

实验记录及数据处理 2、计算结果表 编号 Q W Δtm ℃ Δtmh Δtmc K×10-2 W/m2 ℃ αc×10-3 αh×10-2 Re×10-4 Pr Nu 1 2 3 4 5 6 7 8

数据计算过程 1.定性温度 ,查ρ,Cp,λ,μ; 2.换热器流通面积: 3.换热器换热面积:A=πdl 4.空气流量(校正值): 流速:

数据计算过程 5.计算热负荷(热流量)Q 6.计算总传热系数K 7.计算对流给热系数αc、αh 8.计算准数值 雷诺准数: ,表征流体流动状态; 谱郞特准数: ,表征流体物性的影响; 努塞尔准数: ,描述对流给热系数的大小。 格拉斯霍夫(Gr)准数:描述自然对流的影响(在强制湍流时,可忽略) 。

实验报告要求 (1)写出一组数据的计算过程,即计算示例; (2)数据整理结果列成表格,在双对数坐标纸上作Nu/Prn~Re关系曲线,并由图求出式 中的A、m值,并与 进行比较,分析实验误差及原因; (3)应用实验结果(αc、αh、K等)说明提高总传热系数关键措施是什么?(若αc》αh,K值接近于αh,整个传热过程为热流体的传热步骤所控制;相反,若αc《αh,K值接近于αc,过程为冷流体对流传热步骤所控制。)

实验注意事项 1.实验装置的相关仪表学生不得随便打开,以防触电。 2.打开加热电源开关之前,首先观察蒸发器内是否有水,并及时补充水位至2/3处。 3.实验过程要注意防止烫伤(蒸汽发生器及换热器部位)。 4.实验结束后,一定要注意先关加热电源开关,待温度降至50℃以下,方可关闭空气电源开关。 

实验思考题(1) 1.改变空气流量后,如何使系统尽快稳定? 2.实验中蒸汽侧的吸热量和空气侧的放热量,哪个用于估算总的传热量更合理? 3.当空气进口温度不变而流量减小时,空气出口温度有何变化? 4.为提高总传热系数K,可采用哪些方法? 5.本实验过程传热的阻力主要在那里? 6.在实验过程中,出现温度不稳或偏差?如何进行排除? 7.影响对流传热系数的主要因素有哪些?

实验思考题(2) 8.本实验中所测定的壁面温度是靠近蒸汽的温度,还是接近空气侧的温度?为什么? 9.对于同一个换热器,若冷、热流体的流量均不变,仅改变操作方式(逆流操作变为并流操作,或并流操作变为逆流操作),试问总传热系数K是否发生变化? 10.当风量调节阀关小时,流量计和计前压差计的读数将如何变化?为什么? 11.为什么壁温与蒸汽温度很接近,而与空气温度相差较大? 12.当空气流速增大时,空气离开换热器的温度将升高还是降低?为什么?