Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 2: Μονοπάτια και Κύκλοι (Hamilton) Data Engineering Lab.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Γραφήματα & Επίπεδα Γραφήματα
Advertisements

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Απαντήσεις Προόδου II.
Πιθανοκρατικοί Αλγόριθμοι
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA.
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 2: Μονοπάτια και Κύκλοι (Euler) Data Engineering Lab.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ Β. Κώστογλου – Τμήμα Πληροφορικής ΑΤΕΙ-Θ
Αλγόριθμοι και Πολυπλοκότητα
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Γραφήματα & Επίπεδα Γραφήματα
Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους k.
Γραφήματα & Επίπεδα Γραφήματα
Κοντινότεροι Κοινοί Πρόγονοι α βγ θ δεζ η π ν ι κλμ ρσ τ κκπ(λ,ι)=α, κκπ(τ,σ)=ν, κκπ(λ,π)=η κκπ(π,σ)=γ, κκπ(ξ,ο)=κ ξο κκπ(ι,ξ)=β, κκπ(τ,θ)=θ, κκπ(ο,μ)=α.
1 Θεματική Ενότητα Γραφήματα & Επίπεδα Γραφήματα.
Προσεγγιστικοί Αλγόριθμοι
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Travel Salesman. ABDCA, ABCDA, ACBDA, ACDBA, ADBCA, ADCBA … (3!) 3 σταθμοί και 1 βάση (3! διαδρομές) 4 σταθμοί και 1 βάση (4! = 24) 5 σταθμοί και 1 βάση.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου.
Γράφοι: Προβλήματα και Αλγόριθμοι
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Σχεδιαση Αλγοριθμων - Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο1 Άπληστοι αλγόριθμοι βελτιστοποίησης Προβλήματα βελτιστοποίησης λύνονται με μια σειρά επιλογών.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 1: Βασικές Έννοιες (ορισμοί) Data Engineering Lab.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 9: Αντιστοιχίσεις και καλύμματα Data Engineering Lab.
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 6: Χρωματισμός
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
1 Βέλτιστη δρομολόγηση (optimal routing) Αντιμετώπιση της δρομολόγησης σαν «συνολικό» πρόβλημα βελτιστoποίησης. Γιατί: Η αλλαγή της δρομολόγησης μιας συνόδου.
Ελάχιστο Συνδετικό Δέντρο
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες:
Επιπεδικότητα ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εργαστήριο Τεχνολογίας & Επεξεργασίας Δεδομένων Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 5: Επιπεδικότητα.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα Data Engineering Lab 1.
Υπολογιστική Πολυπλοκότητα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Αναζήτηση Κατά Βάθος Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
1 Κατανεμημένοι αλγόριθμοι για την εύρεση γεννητικών δέντρων (spanning trees) 1.Ένας σταθερός κόμβος στέλνει ένα ‘start’ μήνυμα σε κάθε γειτονική του ακμή.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 4 Δ ΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 1.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι13-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος Dijkstra για εύρεση βραχυτέρων μονοπατιών.
Δένδρα ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εργαστήριο Τεχνολογίας & Επεξεργασίας Δεδομένων Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 3: Δένδρα.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές TSP, Μέτρα κεντρικότητας, Dijkstra Data Engineering Lab.
Συνδεσμικότητα ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εργαστήριο Τεχνολογίας & Επεξεργασίας Δεδομένων Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα.
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 6: Χρωματισμός.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΤΕΙ Αθήνας: Σχολή ΤΕΦ: Τμήμα Ναυπηγικής Εφαρμογές Η/Υ στην Ναυπηγική ΙΙ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ NA0703C39 Εξάμηνο Ζ’ Διδάσκων Κωνσταντίνος Β. Κώστας Παρουσίαση.
Γράφημα είναι μία διμελής σχέση επί ενός συνόλου την οποία παριστάνουμε με γραφικό τρόπο.
Θεωρία & Αλγόριθμοι Γράφων
Δένδρα Δένδρο είναι ένα συνεκτικό άκυκλο γράφημα. Δένδρο Δένδρο Δένδρο
Βέλτιστη δρομολόγηση (optimal routing)
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Στοιχεία Θεωρίας Γραφημάτων
Θεωρία & Αλγόριθμοι Γράφων Αποστάσεις
Θεωρία & Αλγόριθμοι Γράφων Μονοπάτια & Κύκλοι (Hamilton)
Δυναμικός Προγραμματισμός
ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ II
Μεταγράφημα παρουσίασης:

Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 2: Μονοπάτια και Κύκλοι (Hamilton) Data Engineering Lab

Sir William Rowan Hamilton O Ιρλανδός μαθηματικός Hamilton το 1856 κατασκεύασε το παιχνίδι «Γύρος του κόσμου» Πρόβλημα: είναι δυνατόν σε κάθε γράφο να βρεθεί κύκλος που να περνά από όλες τις κορυφές μία μόνο φορά ? Hamiltonian Γράφος Κύκλος Μονοπάτι Data Engineering Lab

The Icosian Game Data Engineering Lab

(η ταξιδιωτική εκδοχή του!) Data Engineering Lab

Δωδεκάεδρο και Hamiltonian κύκλος Data Engineering Lab Data Engineering Lab

Κύκλος Hamilton Κάθε κύκλος Hamilton είναι ένας 2-παράγοντας, επειδή κάθε κύκλος Hamilton είναι ένας ζευγνύων υπογράφος που είναι και τακτικός βαθμού 2. Κάθε 2-παράγοντας δεν είναι κατ΄ ανάγκη κύκλος Hamilton. Κύκλος Hamilton C=(v1,v2,v3,v4,v8,v7,v6,v5,v1) 2-παράγοντας (όχι Hamilton) οι συνιστώσες: (v1,v2,v6,v5,v1) και (v3,v4,v8,v7,v3) Data Engineering Lab

Γράφοι Hamilton Eξιχνιάσιμος-traceable (έχει μονοπάτι Hamilton) Oμογενώς-homogenously εξιχνιάσιμος (εξιχνιάσιμος από κάθε κορυφή) Γράφος υπο-Hamilton αν δεν είναι Hamilton αλλά ο γράφος G-v είναι Hamilton για κάθε κορυφή v του G Συνδεδεμένος κατά Hamilton (δύο οποιεσδήποτε κορυφές συνδέονται με ένα μονοπάτι Hamilton) Κάθε γράφος συνδεδεμένος κατά Hamilton με αριθμό κορυφών ίσο ή μεγαλύτερο του 3, είναι γράφος Hamilton. Το αντίθετο δεν ισχύει. Data Engineering Lab

Συνθήκες για Hamiltonian Πρόβλημα: ποιά είναι η ικανή και αναγκαία συνθήκη, ώστε να είναι ένας γράφος Hamilton? (NP-complete) Θεώρημα: κάθε πλήρης γράφος είναι Hamilton Θεώρημα: κάθε πλήρης γράφος με n κορυφές (n περιττός) έχει (n-1)/2 Hamilton κύκλους ξένους ως προς ακμές Θεώρημα (Dirac 1952): κάθε απλός γράφος με n≥3 και d(G)≥n/2 είναι Hamiltonian Θεώρημα (Ore 1960): κάθε απλός γράφος με n≥3 και d(x)+d(y)≥n για κάθε ζεύγος μη γειτονικών κορυφών x,y είναι Hamiltonian Data Engineering Lab Data Engineering Lab

Hamiltonian Θεωρήματα Θεώρημα: κάθε απλός γράφος με n≥3 και d(x)+d(y)≥n για δύο διακριτές μη γειτονικές κορυφές x,y είναι Hamiltonian, αν ο γράφος G+(x,y) είναι Hamiltonian Κλείσιμο-closure γράφου είναι ένας γράφος c(G) με επιπλέον ακμές για τα ζεύγη μη γειτονικών κορυφών x και y, όπου ισχύει d(x)+d(y)≥n. Θεώρημα (Bondy-Chvatal 1976): κάθε απλός γράφος είναι Hamiltonian, αν και μόνον αν έχει κλείσιμο Hamiltonian. Θεώρημα (Fraudee-Dould-Jacobsen-Schelp 1989): κάθε 2- συνδεδεμένος γράφος όπου για κάθε ζεύγος μη γειτονικών κορυφών x,y ισχύει d(x)+d(y)≥(2n-1)/3 είναι Hamiltonian. Data Engineering Lab

Κλείσιμο Γράφου G Αν c1(G), c2(G) είναι δύο κλεισίματα του G, τα οποία προήλθαν με διαφορετικό τρόπο, τότε c1(G)=c2(G) c(G) Data Engineering Lab

Παράδειγμα Hamiltonian κύκλου Πόσοι Hamiltonian κύκλοι υπάρχουν για το ζυγισμένο γράφο K4 ? A C B D 4 2 6 5 ACBDA με βάρος 16 ABCDA με βάρος 17 ABDCA με βάρος 17 A C B D 4 2 6 A C B D 2 6 5 4 A C B D 4 5 Data Engineering Lab

Αποστάσεις με Άλγεβρα Πινάκων 2 3 6 5 4 1 1 M= Το άθροισμα Μ1+Μ2+…+Μk υποδηλώνει το πλήθος των μονοπατιών από i σε j μήκους 1,2,…,k. 2 1 3 M2= Τι σημασία έχει ο Μ*Μ=Μ2; Data Engineering Lab

Αλγόριθμος Εύρεσης Κύκλων Hamilton Πολυπλοκότητα; M1 M M2 ΑB ΒC CD CE DE EA EB ED B C D E A ABC BCD BCE CEA CEB CED CDE DEA DEB EAB EBC ABCED ABCDE BCDEA CDEAB DEABC EABCD Β Α C E D M4 Data Engineering Lab

Αλγόριθμος εύρεσης κύκλων Hamilton Αν στην k-οστή δύναμη του πίνακα προκύψουν μονοπάτια τέτοια έτσι ώστε να υπάρχει ακμή που να ενώνει το πρώτο και το τελευταίο σύμβολο κάθε συμβολοσειράς, τότε αυτά είναι μονοπάτια Hamiltonian. Το πρόβλημα αυτό μπορεί να λυθεί εναλλακτικά χρησιμοποιώντας έναν αλγόριθμο που στηρίζεται στην Οπισθοδρόμηση (backtracking), το Δυναμικό Προγραμματισμό (dynamic programming) ή τη μεθόδου της Διακλάδωσης με Περιορισμό (branch and bound). Data Engineering Lab

Περιοδεύων Πωλητής Πρόβλημα: με ποια σειρά πρέπει να επισκεφθεί τις πόλεις ο πωλητής και να επιστρέψει στη δική του διανύοντας τη μικρότερη δυνατή συνολική απόσταση; Ζυγισμένος Ευκλείδειος γράφος: ισχύει η ανισοϊσότητα του τριγώνου Αν ο γράφος δεν είναι Ευκλείδειος, τότε κατά τη βέλτιστη λύση ο πωλητής μπορεί να περνά από την ίδια πόλη περισσότερες από μία φορές. Αλλιώς το πρόβλημα ανάγεται σε πρόβλημα εύρεσης κύκλων Hamilton με το ελάχιστο βάρος. 2 2 4 3 1 6 3 7 3 4 5 4 3 Data Engineering Lab

Περιοδεύων Πωλητής Σε έναν πλήρη γράφο ο συνολικός αριθμός κύκλων Hamilton ισούται με (n–1)!/2 Η λύση του πρoβλήματος με εξαντλητικό τρόπο έχει πολυπλοκότητα O(nn), είναι δηλαδή δυσχείριστο. Αν χρησιμοποιηθεί η μέθοδος του δυναμικού προγραμματισμού ή η μέθοδος της διακλάδωσης με περιορισμό, η πολυπλοκότητα προβλήματος παραμένει εκθετική: O(n22n). Επίσης, το πρόβλημα έχει αντιμετωπισθεί με Γεννετικούς Αλγορίθμους, με Νευρωνικά Δίκτυα και με Αλγόριθμους Μυρμηγκιών (ant) Data Engineering Lab

Προσεγγιστικοί Αλγόριθμοι Επίλυση με ευριστικές υπο-βέλτιστες λύσεις Μέτρο σύγκρισης είναι η ποσότητα 1<L/Lopt=a 1 2 4 3 51 6 5 60 56 21 36 68 57 61 35 70 13 Data Engineering Lab

Μέθοδος Πλησιέστερου Γείτονα Θέτουμε i←1. Επιλέγουμε μία τυχαία κορυφή v0 και θεωρούμε το μονοπάτι Pi=v0 Αν i=n, τότε C=Pn είναι ένας κύκλος Hamilton, αλλιώς αναζητείται η ακμή e με το μικρότερο βάρος ώστε να προσπίπτει σε μία από τις δύο τερματικές κορυφές του Pi και αν είναι δυνατόν, να μη δημιουργείται κύκλος με τις κορυφές του Pi. Σχηματίζεται το μονοπάτι Pi+1=(Pie). Θέτουμε i←i+1. Πηγαίνουμε στο βήμα 2. Έχει αποδειχθεί ότι α=(|ln n|+1)/2 και άρα για μεγάλα n έχει σημαντική απόκλιση από τη βέλτιστη λύση Πολυπλοκότητα; Data Engineering Lab

Παράδειγμα Μέθοδος πλησιέστερου γείτονα (άπληστη) 1 2 4 3 51 6 5 13 60 56 21 36 68 57 61 35 70 Μέθοδος πλησιέστερου γείτονα (άπληστη) 3-6  βάρος 2 5-3-6  βάρος 2+35=37 4-5-3-6  βάρος 37+21=58 4-5-3-6-1  βάρος 58+51=109 4-5-3-6-1-2  βάρος 109+13=122 4-5-3-6-1-2-4  βάρος 122+70=192 Data Engineering Lab

Μέθοδος της Μικρότερης Εισαγωγής Θέτουμε i←1. Επιλέγουμε μία τυχαία κορυφή v0 και θεωρούμε το μονοπάτι Ci=v0 Αν i=n, τότε C=Cn είναι ένας κύκλος Hamilton, αλλιώς αναζητείται μία κορυφή vi που δεν υπάρχει στον κύκλο Ci και είναι πλησιέστερα προς ένα ζεύγος διαδοχικών κορυφών {wi,wi+1} του Ci. Σχηματίζεται ο κύκλος Ci+1 εισάγοντας την κορυφή vi μεταξύ των wi και wi+1. Θέτουμε i←i+1. Πηγαίνουμε στο Βήμα 2. Στο βήμα 2 ελαχιστοποιείται η ποσότητα dist(wi,vi)+dist(vi,wi+1)–dist(wi, wi+1). Πρέπει να ισχύει η τριγωνική ανισότητα. Ισχύει ότι α≤2, ενώ η πολυπλοκότητα του αλγορίθμου είναι O(n3). Data Engineering Lab

Παράδειγμα Μέθοδος μικρότερης εισαγωγής (άπληστη) (3) (3,6,3) (3,6,5,3) (3,6,5,4,3) (3,6,1,5,4,3) (3,6,2,1,5,4,3) βάρος 192 13 1 2 61 51 60 68 68 51 2 6 3 70 35 57 70 36 56 5 4 21 Data Engineering Lab

Ελάχιστα Ζευγνύοντα Δέντρα Βρίσκουμε ένα ελάχιστο ζευγνύον δένδρο Τ του G. Εκτελούμε μία αναζήτηση κατά βάθος. [Αν από μία κορυφή v0 προσπελασθεί η v1, τότε η διαδικασία συνεχίζεται προς κάποια νέα γειτονική κορυφή της v1 και όχι της v0. Αν προσεγγισθεί κάποια κορυφή από όπου είναι αδύνατο η διαδικασία να συνεχισθεί σε μία μη ήδη επισκεφθείσα κορυφή, τότε η διαδικασία συνεχίζει από την προηγούμενη της τρέχουσας κορυφής με την ίδια τεχνική.] Αν είναι η σειρά επίσκεψης των κορυφών του T από το Βήμα 2, τότε ο κύκλος Hamilton είναι Data Engineering Lab

Παράδειγμα Ο(m+nlogn) Μέθοδος με ελάχιστα ζευγνύοντα δένδρα Εφαρμόζοντας τον αλγόριθμο του Prim προκύπτει το ζευγνύον δένδρο που φαίνεται και ακολούθως με μία αναζήτηση κατά βάθος λαμβάνεται το αποτέλεσμα 1 2 3 6 5 4 51 35 21 68 57 13 Με αφετηρία του dfs την κορυφή 3 (3,1,2,5,4,6,3) βάρος 212 Με αφετηρία του dfs την κορυφή 1 (1,2,3,5,4,6,1) βάρος 237 κλπ Data Engineering Lab

Διαδοχικές Ανταλλαγές Ακμών Θεωρείται ένας Hamiltonian κύκλος C=(v1,v2,…,vn,v1) Για κάθε i,j, τέτοια ώστε 1<i+1<j<n, λαμβάνεται ένας νέος Hamiltonian κύκλος Ci,j=(v1,v2,…,vi,vj,vj-1,…,vi+1, vj+1,vj+2,…,vn,v1) διαγράφοντας τις ακμές (vi,vi+1) και (vj,vj+1) και προσθέτοντας τις ακμές (vi,vj) και (vi+1,vj+1). Αν για κάποια i,j προκύψει w(vi,vj)+w(vi+1,vj+1)<w(vi,vi+1)+w(vj,vj+1) τότε θέτουμε C=Ci,j. Πηγαίνουμε στο Βήμα 2. Data Engineering Lab

Παράδειγμα Μέθοδος με διαδοχικές ανταλλαγές ακμών (3,4,5,6,1,2,3) βάρος 237 (3,6,5,4,1,2,3) βάρος 210 (3,6,5,4,2,1,3) βάρος 193 (3,6,1,2,4,5,3) βάρος 192 Ο τελευταίος κύκλος δεν βελτιώνεται περισσότερο αλλά μπορεί να βρεθεί μικρότερος κύκλος με άλλη κορυφή ως αφετηρία. 13 1 2 61 51 60 68 68 51 2 6 3 70 35 57 70 36 56 5 21 4 Data Engineering Lab

Πρακτική Εύρεση Κάτω Φράγματος Μέθοδος πρακτικής εύρεσης κάτω ορίου σε πρόβλημα TSP: Θεωρούμε ελάχιστο ζευγνύον δένδρο σε γράφο G-v με βάρος w(T) Θεωρούμε δύο ακμές προσπίπτουσες στο v έτσι ώστε το άθροισμα των βαρών τους να είναι ελάχιστο Aν v=5, τότε w(T)=122, 122+21+35=178=κάτω φράγμα 1 2 3 6 5 4 13 51 35 56 21 Data Engineering Lab

Το μέγεθος του TSP possible solutions (n-1)! # of cities n 100,000 = 105 άνθρωποι σε ένα γήπεδο 5,500,000,000 = 5.5  109 άνθρωποι στη γη 1,000,000,000,000,000,000,000 = 1021 λίτρα νερού στη γη 1010 years = 3  1017 seconds η ηληκία του σύμπαντος # of cities n possible solutions (n-1)! = # of cyclic permutations 10  181,000 20  10,000,000,000,000,000 = 1016 50  100,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000 = 1062 Data Engineering Lab

Εφαρμογή TSP για πόλεις των ΗΠΑ Μία αφίσα του 1962 από την Proctor & Gamble για το διαγωνισμό επίλυσης του προβλήματος για 33 πόλεις των ΗΠΑ το 1962. Data Engineering Lab

Εξέλιξη επίδοσης TSP Data Engineering Lab Data Engineering Lab

Εξέλιξη επίδοσης TSP (2) Data Engineering Lab

Εφαρμογή TSP για πόλεις των ΗΠΑ George Dantzig, Ray Fulkerson, Selmer Johnson Data Engineering Lab Data Engineering Lab

Εφαρμογή TSP για 100 πόλεις της Ευρώπης Το μήκος του βέλτιστου κύκλου είναι 21134 km. Data Engineering Lab Data Engineering Lab

Εφαρμογή TSP για 120 πόλεις της Γερμανίας Το μήκος του βέλτιστου κύκλου είναι 6942 km Πλήθος λύσεων (179 ψηφία) Data Engineering Lab

Εφαρμογή TSP για πόλεις των ΗΠΑ Data Engineering Lab Data Engineering Lab

Εφαρμογή TSP για πόλεις των ΗΠΑ http://www.tsp.gatech.edu Data Engineering Lab Data Engineering Lab

3 βέλτιστοι κύκλοι για γερμανικές πόλεις http://www.math.princeton.edu/ tsp/d15sol/dhistory.html Martin Grötschel Data Engineering Lab

Βέλτιστος κύκλος της Σουηδίας 24.978 πόλεις 2004 Martin Grötschel Data Engineering Lab

Τρέχον παγκόσμιο ρεκόρ (2006) Με παραλληλισμό του κώδικα Concorde και 2719.5 cpu-days N = 85,900 Data Engineering Lab

Εφαρμογή TSP για PLA 11,849 τρύπες σε programmed logic array http://www.tsp.gatech.edu Data Engineering Lab Data Engineering Lab

Εφαρμογή TSP για PLA (συνέχεια) http://www.tsp.gatech.edu Data Engineering Lab Data Engineering Lab

Σημαντικά βιβλία για TSP The Traveling Salesman Problem, Lawler, Lenstra, Rinnooy Kan, and Shmoys (Editors), Wiley (1985). The Traveling Salesman Problem and Its Variations, Gutin and Punnen (Editors), Kluwer (2002). The Traveling Salesman Problem: A Computational Study, Applegate, Bixby, Chvatal, and Cook, Princeton University Press (2006). In Pursuit of the Traveling Salesman, Cook, Princeton University Press (2012). Data Engineering Lab

Άπειροι Γράφοι Οι κορυφές είναι σημεία του επιπέδου με ακέραιες συντεταγμένες, ενώ οι ακμές ενώνουν κορυφές σε απόσταση 1 Σε άπειρο γράφο δεν υπάρχει κύκλωμα Euler ή κύκλος Hamilton, αλλά υπάρχουν τα αντίστοιχα μονοπάτια Μονοπάτι Euler είναι το μονοπάτι που είναι άπειρο προς τις δύο κατευθύνσεις (two-way) και περνά από όλες τις ακμές. Ένα Hamiltonian μονοπάτι άπειρο και προς τις δύο κατευθύνσεις είναι ένας 2-παράγοντας. Μονοδρομικό (one-way) μονοπάτι Euler/Hamilton είναι το μονοπάτι που ξεκινά από μία κορυφή και επεκτείνεται επ’άπειρο (space filling curve) Data Engineering Lab

Παράδειγμα Data Engineering Lab

Μαγικά Τετράγωνα Γραμμές, στήλες και διαγώνιοι έχουν ίσο άθροισμα 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 23 1 2 20 19 22 16 9 14 4 5 11 13 15 21 8 12 17 10 18 7 25 24 6 3 Data Engineering Lab

Αλγόριθμοι Μαγικών Τετραγώνων Αλγόριθμοι κατασκευής μαγικών τετραγώνων (περιττής τάξης): Διαδοχική τοποθέτηση αριθμών των 1,2,... σε επάνω δεξιά κελί, αρχίζοντας από το μεσαίο επάνω κελί Προσθέτοντας σε κάθε θέση του βασικού μαγικού τετραγώνου τον ίδιο τυχαίο αριθμό Αντικαθιστώντας τους αριθμούς [1..9] με τους 9 διαδοχικούς περιττούς αριθμούς [3..17] Μέθοδος Bachet (με ρόμβο) με άλλα τεχνάσματα… 8 1 6 3 5 7 4 9 2 17 3 13 7 11 15 9 19 5 Data Engineering Lab

Μέθοδος Bachet – Παράδειγμα 5 4 10 3 7 13 19 15 9 8 14 12 18 17 11 23 16 22 3 9 15 20 21 2 2 8 14 20 25 1 1 7 13 19 25 24 5 6 6 12 18 24 4 10 11 17 23 16 22 21 Data Engineering Lab

Μαγικοί Γράφοι - Παραδείγματα Μαγικός λέγεται ο γράφος όπου το άθροισμα των επιγραφών των ακμών που προσπίπτουν σε όλες τις κορυφές είναι ίσο Κ4,4 Κ3,3 Data Engineering Lab

Μαγικοί Γράφοι Θεώρημα: αν ένας διμερής γράφος μπορεί να αποσυντεθεί σε 2 κύκλους Hamilton, τότε ο γράφος είναι μαγικός. Αντιμαγικός λέγεται ο γράφος όπου τα αθροίσματα των επιγραφών των ακμών που προσπίπτουν σε όλες τις κορυφές είναι διάφορα μεταξύ τους. Πλήθος μαγικών αντικειμένων (ομόκεντρα τετράγωνα, τετράγωνα με ντόμινο, πολύγωνα κλπ) Data Engineering Lab

Περίπατος του Ιππότη/αλόγου Σε σκακιέρα 8x8, είναι δυνατόν το άλογο να ακολουθήσει ένα μονοπάτι που να επισκέπτεται μία φορά όλα τα τετράγωνα ? Data Engineering Lab

Περίπατος του Ιππότη/αλόγου Υπάρχουν δισεκατομμύρια λύσεις-μονοπάτια, εκ των οποίων κλειστά είναι τα 122.οοο.οοο. Δόθηκαν λύσεις στο πρόβλημα κατά τον 9ο αιώνα Data Engineering Lab

Περίπατος του Ιππότη/αλόγου Data Engineering Lab

Περίπατος του Ιππότη/αλόγου 1759: Η Ακαδημία Επιστημών του Βερολίνου θέσπισε βραβείο 4000 φράγκων για τη λύση του προβλήματος. Το πρόβλημα λύθηκε το 1766 από τον Euler Το βραβείο δεν δόθηκε στον Euler επειδή ήταν Διευθυντής των Μαθηματικών στην Ακαδημία και δεν ήταν επιλέξιμος. [Αποσύρθηκε από τη θέση και την κατέλαβε ο Lagrange]. Data Engineering Lab

Περίπατος του ιππότη - Euler 2 1 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 23 25 26 27 28 29 30 31 32 33 35 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 60 64 63 56 59 57 61 62 58 55 49 24 39 34 36 22 11 260 Ποιός είναι ο μαγικός αριθμός? 260 Data Engineering Lab

Περίπατος του Ιππότη/αλόγου 2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 39 60 64 63 56 59 57 61 62 58 55 Λύση DeMoivre - Κίνηση περιμετρικά Data Engineering Lab

Στιγμιαία Παραφροσύνη 2424 243=41472 4 κύβοι που περιέχουν όλα τα 4 χρώματα (κόκκινο, μπλε, πράσινο και άσπρο). Ο στόχος είναι να βάλουμε τον έναν κύβο επάνω στον άλλο έτσι ώστε κάθε πλευρά (μπροστά – πίσω – αριστερά – δεξιά) να έχει και τα 4 χρώματα. Η κατανομή χρωμάτων είναι μοναδική σε κάθε κύβο. Data Engineering Lab

Στιγμιαία Παραφροσύνη Κάθε κύβος αναπαρίσταται από ένα γράφο με 4 κορυφές (μία για κάθε χρώμα) 1 2 3 4 1 2 3 4 Data Engineering Lab

Στιγμιαία Παραφροσύνη Παίρνουμε την ένωση των 4 γράφων. Βρίσκουμε 2 Hamiltonian κύκλους ξένους ως προς τις ακμές και με διακριτές επιγραφές ακμών. Οι κύκλοι αυτοί αντιπροσωπεύουν την εμπρόσθια και την οπίσθια όψη του παραλληλεπιπέδου 2 1 3 4 3 2 1 4 Data Engineering Lab