Βάσεις Δεδομένων 2013-2014Ευαγγελία Πιτουρά1 Δυναμικός Κατακερματισμός.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια.
Advertisements

Indexing.
Δένδρα van Emde Boas TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Μελετάμε την περίπτωση όπου αποθηκεύουμε.
Κώδικες Huffman Μέθοδος συμπίεσης δεδομένων:
Στοιχειώδεις Δομές Δεδομένων TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Τύποι δεδομένων στη Java • Ακέραιοι.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση.
Απαντήσεις Προόδου II.
-Στοίβα-Ουρά - Πλεονεκτήματα πινάκων -Δομές δεδομένων δευτερεύουσας μνήμης -Πληροφορική και δεδομένα -Παραδείγματα-Προβλήματα ψευδοκώδικα.
Αντισταθμιστική ανάλυση Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή.
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι
Κατανομή με ευρετήριο.
Συνάφεια Κρυφής Μνήμης σε Επεκτάσιμα Μηχανήματα. Συστήματα με Κοινή ή Κατανεμημένη Μνήμη  Σύστημα μοιραζόμενης μνήμης  Σύστημα κατανεμημένης μνήμης.
ΟΙ ΠΛΗΡΟΦΟΡΙΕΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΟΥ Η/Υ
ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Εισαγωγή στην Επεξεργασία Ερωτήσεων.
12 Δενδρικές Μέθοδοι Προσπέλασης  Β-δένδρα  Β*-δένδρα  Β + -δένδρα  Άλλες παραλλαγές των Β-δένδρων.
Κατακερματισμός Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A εισαγωγή αναζήτησηεπιλογή διατεταγμένος πίνακας.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων.
Μετατροπές Μονάδων.
Linear Hashing Τμήμα Πληροφορικής & Τηλ/νών, ΕΚΠΑ Υλοποίηση Συστημάτων Βάσεων Δεδομένων
Κεφάλαιο 2ο Πεπερασμένα αυτόματα.
Κοντινότεροι Κοινοί Πρόγονοι α βγ θ δεζ η π ν ι κλμ ρσ τ κκπ(λ,ι)=α, κκπ(τ,σ)=ν, κκπ(λ,π)=η κκπ(π,σ)=γ, κκπ(ξ,ο)=κ ξο κκπ(ι,ξ)=β, κκπ(τ,θ)=θ, κκπ(ο,μ)=α.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια.
Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Έλεγχος της.
Ευρετήρια. 2 Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου Δευτερεύον ευρετήριο (secondary index): ορισμένο σε πεδία διαφορετικά.
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Χειριζόμαστε ένα σύνολο στοιχείων όπου το κάθε.
Ευρετήρια.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Ευρετήρια.
1 Α. Βαφειάδης Αναβάθμισης Προγράμματος Σπουδών Τμήματος Πληροφορικής Τ.Ε.Ι Θεσσαλονίκης Μάθημα Προηγμένες Αρχιτεκτονικές Υπολογιστών Κεφαλαίο Τρίτο Συστήματα.
ΘΠ06 - Μεταγλωττιστές Πίνακας Συμβόλων Φροντιστήριο - 30/04/2009.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Αποθήκευση Δεδομένων.
Δυναμικά Σύνολα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Τμ. Πληροφορικής,
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Τμ.
Δομές Δεδομένων - Ισοζυγισμένα Δυαδικά Δένδρα (balanced binary trees)
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες:
Λεξικό, Union – Find Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων.
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι 8-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα B-Δένδρα.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Οργάνωση Αρχείων.
Παράδειγμα B + -Tree Υποθέτουμε B + -Tree τάξης 3 (α=2, b=3)  Κάθε φύλλο θα έχει 2 ως 3 το πολύ στοιχεία  Κάθε εσωτερικός κόμβος θα έχει 2 ως 3 το πολύ.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Οργάνωση Αρχείων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Επεξεργασία Ερωτήσεων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Αποθήκευση Δεδομένων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Αποθήκευση Δεδομένων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Επεξεργασία Ερωτήσεων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Αποθήκευση Δεδομένων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Οργάνωση Αρχείων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια.
Ασκήσεις Κατακερματισμού
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Επεξεργασία Ερωτήσεων.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Αποθήκευση Δεδομένων.
Γλώσσες Προγραμματισμού Μεταγλωττιστές Πίνακας Συμβόλων Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου.
Ευρετήρια Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
Δυναμικός Κατακερματισμός
Ευρετήρια Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
Διδάσκων: Δρ. Τσίντζα Παναγιώτα
Βάσεις Δεδομένων ΙΙ 7η διάλεξη
13 Κατακερματισμός Συναρτήσεις Κατακερματισμού
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων όπου το κάθε στοιχείο έχει ένα κλειδί από ολικά διατεταγμένο σύνολο Θέλουμε να υποστηρίξουμε δύο.
Δυναμικός Κατακερματισμός
19η Διάλεξη Εξωτερική Αναζήτηση και Β-δέντρα Ε. Μαρκάκης
Εξωτερική Αναζήτηση Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη
Δυναμικός Κατακερματισμός
Μεταγράφημα παρουσίασης:

Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Δυναμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2 Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού  Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου)  μέγεθος κάδου -> 1 block (ή συστοιχία από συνεχόμενα blocks)  Τιμή του πεδίου κατακερματισμού + δείκτη στο υπόλοιπο της εγγραφής; (ως ευρετήριο ) Τι γίνεται αν το πεδίο κατακερματισμού δεν είναι κλειδί; Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 3 Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης) Δυναμικός κατακερματισμός  Επεκτατός  Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 4  Δυαδική αναπαράσταση του αποτελέσματος της συνάρτησης κατακερματισμού, δηλαδή ως μια ακολουθίας δυαδικών ψηφίων  Κατανομή εγγραφών με βάση την τιμή των αρχικών (ή τελικών) ψηφίων Δυναμικός Εξωτερικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 5  Το αρχείο ξεκινά με ένα μόνο κάδο  Μόλις γεμίσει ένας κάδος διασπάται σε δύο κάδους με βάση την τιμή του 1ου (ή τελευταίου) δυαδικού ψηφίου των τιμών κατακερματισμού -- δηλαδή οι εγγραφές που το πρώτο (τελευταίο) ψηφίο της τιμής κατακερματισμού τους είναι 1 τοποθετούνται σε ένα κάδο και οι άλλες (με 0) στον άλλο  Νέα υπερχείλιση ενός κάδου οδηγεί σε διάσπαση του με βάση το αμέσως επόμενο δυαδικό ψηφίο κοκ Δυναμικός Κατακερματισμός (εισαγωγή)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 6 Χρήση των τελευταίων bits της δυαδικής αναπαράστασης εγγραφές ανά κάδο Αποτέλεσμα συνάρτησης κατακερματισμού Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 7 Έτσι δημιουργείται μια δυαδική δενδρική δομή που λέγεται κατάλογος (dirtectory) ή ευρετήριο (index) με δύο ειδών κόμβους  εσωτερικούς: που καθοδηγούν την αναζήτηση  εξωτερικούς: που δείχνουν σε ένα κάδο Δυναμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 8 Αλγόριθμος αναζήτησης h := τιμή κατακερματισμού t := ρίζα του δέντρου i := 1 while (t εσωτερικός κόμβος) if (i-οστό bit του h είναι 0) t := αριστερά του t else t := δεξιά του t i := i +1 Δυναμικός Κατακερματισμός (αναζήτηση)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 9  Που αποθηκεύεται ο κατάλογος  στη μνήμη, εκτός αν είναι πολύ μεγάλος  τότε στο δίσκο – οπότε απαιτούνται επιπρόσθετες προσπελάσεις  Δυναμική επέκταση αλλά μέγιστος αριθμός επιπέδων (το πλήθος των δυαδικών ψηφίων της συνάρτησης κατακερματισμού)  Ισοζύγιση  Συνένωση κάδων (δυναμική συρρίκνωση) Δυναμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 10 Ο κατάλογος είναι ένας πίνακας με 2 d διευθύνσεις κάδων (d: ολικό βάθος του καταλόγου) Κάδος για τις εγγραφές με τιμές κατακερματισμού που τελειώνουν σε 000 Τα τελευταία d ψηφία της τιμής κατακερματισμού χρησιμοποιούνται ως δείκτης στον πίνακα Στις διαφάνειες, χρησιμοποιούμε τα τελευταία bits της δυαδικής αναπαράστασης Επεκτατός Κατακερματισμός (extendible hashing)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά Κάδος για τις εγγραφές με τιμές κατακερματισμού που τελειώνουν από 00 Δε χρειάζεται ένας διαφορετικός κάδος για κάθε μία από τις 2 d θέσεις - μπορεί η θέση του πίνακα να δείχνει στη διεύθυνση του ίδιου κάδου αν αυτές χωράνε σε ένα κάδο Για κάθε κάδο, τοπικό βάθος d’ o αριθμός των δυαδικών ψηφίων στα οποία βασίζεται η χρήση του κάδου Παράδειγμα: 2 εγγραφές ανά κάδο εισαγωγή 2, 4, 3, 10, 7, 9 Επεκτατός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 12 Χρήση των τελευταίων bits της δυαδικής αναπαράστασης εγγραφές ανά κάδο Αποτέλεσμα συνάρτησης κατακερματισμού Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 13 Χρήση των τελευταίων bits της δυαδικής αναπαράστασης Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 14 Η τιμή του d μπορεί να αυξάνεται (μέχρι 2 κ, κ: αριθμός δυαδικών ψηφίων της τιμής κατακερματισμού) ή να μειώνεται  Αύξηση της τιμής του d Όταν ένας κάδος με τιμή d’ = d υπερχειλίσει Διπλασιασμός του πίνακα  Μείωση της τιμής του d Όταν για όλους τους κάδους d’ < d Μείωση του μεγέθους του πίνακα στο μισό Δε χρειάζεται rehash (επανα-κερματισμό), Μοιράζουμε μόνο τις εγγραφές του κάδου που υπερχείλισε Επεκτατός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά Διάσπαση- νέο ολικό βάθος 3 Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά > διάσπαση Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 17 Θέλουμε να αποφύγουμε τη χρήση καταλόγου και το κόστος διπλασιασμού του μεγέθους του καταλόγου Προσοχή! Αυτή η μέθοδος: Διατηρεί λίστες υπερχείλισης Δε χρησιμοποιεί τη δυαδική αναπαράσταση Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 18 Έστω αρχικά Μ κάδους Χρησιμοποιείται μια οικογένεια από συναρτήσεις κατακερματισμού h 0 (k), h 1 (k), …, h d (k) Κάθε συνάρτηση έχει διπλάσιους κάδους από την προηγούμενη: h 0 (k) = k mod M, h 1 (k) = k mod 2M, h 2 (k) = k mod 4M, …, h j (k) = k mod 2 j M Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά19 Ξεκινάμε από την πρώτη συνάρτηση κατακερματισμού (h 0 ) Όταν συμβεί η πρώτη υπερχείλιση ενός κάδου, γίνεται διάσπαση με χρήση της h 1 αλλά όχι του κάδου που υπερχείλισε αλλά του κάδου 0 Στη συνέχεια, κάθε κάδος διασπάτε με τη σειρά (δηλαδή, κάδος 1, 2, 3) Στο στάδιο αυτό χρησιμοποιούνται η h 0 και η h 1 Μέχρι να διασπαστούν και οι 4 κάδοι Όταν διασπαστούν όλοι οι κάδοι, Οι διασπάσεις θα ξεκινούν από τον κάδο 0 με χρήση της h 2 Πάλι η διάσπαση των κάδων γίνεται με τη σειρά, δηλαδή 0, 1, 2, …, 7 Στο στάδιο αυτό χρησιμοποιούνται η h 1 και η h 2 Μέχρι να διασπαστούν και οι 8 κάδοι κοκ Γραμμικός Κατακερματισμός (εισαγωγή)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά20  Πολλές συναρτήσεις κατακερματισμού (άλλη σε κάθε βήμα)  Οι κάδοι σε κάθε βήμα διασπώνται με τη σειρά (ο ένας μετά τον άλλο – ανεξάρτητα αν είναι αυτοί που έχουν ή όχι υπερχειλίσει)  Πότε γίνεται διάσπαση; Θα θεωρήσουμε ότι γίνεται διάσπαση όταν δημιουργείται ένας κάδος υπερχείλισης (όταν γίνεται εισαγωγή σε ένα γεμάτο κάδο)  Αρκούν δύο μεταβλητές  Βήμα Διάσπασης (j) - ποια συνάρτηση χρησιμοποιούμε (αρχικά j = 0)  Πλήθος Διασπάσεων (n) – ποιος είναι ο επόμενος κάδος που θα διασπαστεί (αρχικά n = 0) Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά21 Όταν συμβεί μια υπερχείλιση σε έναν οποιοδήποτε κάδο, ο κάδος 0 χωρίζεται σε δύο κάδους: τον αρχικό κάδο 0 και ένα νέο κάδο Μ στο τέλος του αρχείου με βάση την συνάρτηση h 1 (k) = k mod 2M Βήμα Διάσπασης (ποια συνάρτηση χρησιμοποιούμε) j = 0 Πλήθος Διασπάσεων n = 1 Συνεχίζουμε γραμμικά, διασπώντας με τη σειρά τους κάδους 1, 2, 3,... μέχρι να διασπαστούν όλοι οι «παλιοί» κάδοι η μεταβλητή n («Πλήθος Διασπάσεων») κρατάει ποιος κάδος έχει σειρά για διάσπαση Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά22 Όταν συμβεί μια υπερχείλιση σε έναν οποιοδήποτε κάδο, ο κάδος n χωρίζεται σε δύο κάδους: τον αρχικό κάδο n και ένα νέο κάδο n + k - 1 στο τέλος του αρχείου με βάση την συνάρτηση h 1 (k) = k mod 2M Δηλαδή, σε κάθε υπερχείλιση χωρίζουμε τον επόμενο στη σειρά κάδο Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά23 Όλοι οι κάδοι έχουν διασπαστεί όταν: n = M Τότε έχουμε 2M κάδους Όταν n = M, μηδενίζουμε το n, n = 0 και για οποιαδήποτε νέα διάσπαση εφαρμόζουμε την h 2 (k) = k mod 4M Διασπώντας πάλι τον κάδο 0, 1,... κ.τ.λ Συνεχίζουμε... Γραμμικός Κατακερματισμός

Βάσεις Δεδομένων Ευαγγελία Πιτουρά Κάθε κάδος 4 εγγραφές Αρχικά 4 κάδους (M = 4) Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά25 Βήμα διάσπασης 0 (χρήση h 0 ) Πλήθος διασπάσεων = 0 43 Διασπάμε τον πρώτο κάδο h 0 (k) = k mod 4 h 1 (k) = k mod 8 Για μη διασπασμένους κάδους: παλιά συνάρτηση Για διασπασμένους κάδους: νέα συνάρτηση Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά26 Γενικά βήμα διάσπασης j (j = 0, 1, 2, …) h j (k) = k mod 2 j M, και την h j+1 (k) για διασπάσεις Γραμμικός Κατακερματισμός Δηλαδή, σε κάθε βήμα έχουμε ένα ζεύγος συναρτήσεων (j, j+1): η πρώτη χρησιμοποιείται για τους μη διασπασμένους κάδους (δηλαδή, με αριθμό μεγαλύτερο του n) και η δεύτερη για τους διασπασμένους

Βάσεις Δεδομένων Ευαγγελία Πιτουρά27 Βήμα διάσπασης 0 (χρήση h 0 ) Πλήθος διασπάσεων = 1 h 0 (k) = k mod 4 h 1 (k) = k mod Για μη διασπασμένους κάδους: παλιά συνάρτηση Για διασπασμένους κάδους: νέα συνάρτηση Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά28 Βήμα διάσπασης 0 (χρήση h 0 ) Πλήθος διασπάσεων = 3 Εισαγωγή του 50 Παράδειγμα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά29 Τι χρειάζεται να ξέρουμε για να βρεθεί ο κάδος της εγγραφής k που ψάχνουμε;  ποια συνάρτηση χρησιμοποιούμε (δηλαδή, το j)  σε ποια διάσπαση βρισκόμαστε (δηλαδή το n) Έστω ότι είμαστε στο βήμα j, Τότε θα πρέπει να κοιτάξουμε είτε το h j (k) αν ο κάδος δεν έχει διασπαστεί ή το h j+1 (k) αν έχει διασπαστεί Πως θα ελέγξουμε αν ο κάδος έχει διασπαστεί ή όχι Γραμμικός Κατακερματισμός (αναζήτηση εγγραφής)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά30 Έστω n ο αριθμός διασπάσεων και ότι αναζητούμε το k, βρίσκεται στον κάδο h j (k) τότε αν n  h j (k) o κάδος δεν έχει διασπαστεί ενώ αν n > h j (k) o κάδος έχει διασπαστεί και εφαρμόζουμε την h j+1 (k) Γραμμικός Κατακερματισμός (αναζήτηση)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά31 Αλγόριθμος Αναζήτησης j : βήμα διάσπασηςn : πλήθος διασπάσεων στο βήμα j if (n = 0) then m := h j (k); else { m := h j (k); if (m < n) then m := h j+1 (k) } σημαίνει ότι ο κάδος έχει διασπαστεί Γραμμικός Κατακερματισμός (αναζήτηση)

Ερωτήσεις;