Radiative and other rare ρ, ω, φ – decays from VEPP-2M

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
“ Ἡ ἀ γάπη ἀ νυπόκριτος. ἀ ποστυγο ῦ ντες τ ὸ πονηρόν, κολλώμενοι τ ῷ ἀ γαθ ῷ, τ ῇ φιλαδελφί ᾳ ε ἰ ς ἀ λλήλους φιλόστοργοι, τ ῇ τιμ ῇ ἀ λλήλους προηγούμενοι.
Advertisements

ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Ταχύτητες θερμοπυρηνικών αντιδράσεων στο εσωτερικό των αστέρων
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ TRANSFORMERS Reference : ΤΕΙ Κρήτης - Ηλεκτρικές Μηχανές Συλλιγνάκης.
Ο PID έλεγχος. Integral Lag Distance velocity lag Υλοποιούμε την.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Time Management Matrix Assignment Submitted By Safwan Zubair October 21, 2013 BUS Contemporary Business Practice Professor Nankin.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
Αντίληψη (2016) Όραση Μαρία Κουτρομάνου. Structure of the Eye: Iris The iris is similar to the diaphragm in a camera Your iris widens in dim light and.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
Αντισταθμιστική ανάλυση
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Jane Austen Pride and Prejudice (περηφάνια και προκατάληψη)
Επανασχεδιασμός του Ευρωπαϊκού Συστήματος Ενδοκοινοτικών Συναλλαγών (Revised Intrastat) Η συγκεκριμένη παρουσίαση συνοψίζει την ανάλυση των αποτελεσμάτων.
Matrix Analytic Techniques
Η ανάπτυξη του κωφού παιδιού
Ψηφιακeς ιδEες και αξIες
Αν. Καθηγητής Γεώργιος Ευθύμογλου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
φίλτρα IIR (Infinite Impulse Response)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΔΙΑΣΚΕΔΑΣΜΟΥ
Άλλη επιλογή: Κύλινδρος:
ΒΧΔ Πολλαπλών κλιμάκων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Το χάρτινο θέατρο εμφανίζεται στη Ευρώπη στα τέλη του 18ου αιώνα
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Γεώργιος Σ. Γκουμάς MD,PhD, FESC
ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΠΟΜΟΝΩΣΗΣ ΤΩΝ PV ΣΤΗ ΡΟΗ ΤΟΥ LAA ΣΕ ΑΣΘΕΝΕΙΣ ΜΕ PAF
2 Θεςη και διαταξη 11/9/2018 6:52 πμ ΔΡ. ΧΡΥΣΟΥΛΑ ΠΑΠΑΪΩΑΝΝΟΥ
Μία πρακτική εισαγωγή στην χρήση του R
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
Θεωρία Παιγνίων: οι Καταλήψεις και οι Τζαμπατζήδες
aka Mathematical Models and Applications
GLY 326 Structural Geology
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Choosing between Competing Experimental Designs
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
ΑΠΟΣΤΑΞΗ Distillation.
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
ΑΝΟΡΓΑΝΗ & ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ
Find: σ1 [kPa] for CD test at failure
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
Shuangshi Fang η and η’ physics at BESIII
Study of K+ K- π0 in J/y →h’ K+ K- π0
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Erasmus + An experience with and for refugees Fay Pliagou.
Vector Resonance from Strong EWSB in pp → WWtt, tttt
A New Vector Resonance Production at LHC
Μεταγράφημα παρουσίασης:

Radiative and other rare ρ, ω, φ – decays from VEPP-2M Tatyana Dimova BINP, Novosibirsk International Workshop on e+e- collisions from Phi to Psi’08 hfghfgh

VEPP-2M e+ e- collider VEPP-2M collider: 0.36-1.4 GeV in c.m., L31030 1/cm2s at 1 GeV Detectors CMD-2 and SND: 60 pb-1 collected in 1993-2000 hfghfgh

Spherical Neutral Detector (SND) 1 –beam pipe, 2 –drift chambers, 3 –scintillation counter, 4 –lightguides, 5 –PMTs, 6 –NaI(Tl) crystals, 7 – vacuum phototriodes, 8 – iron absorber, 9 –streamer tubes, 10 – 1 cm iron plates, 11 –scintillation counters, 12 and 13 –collider magnets.

Cryogenic Magnet Detector - 2 (CMD-2) 1 – vacuum chamber, 2 – drift chamber, 3 – Z-chamber, 4 – superconducting solenoid, 5 – compensating solenoid, 6 – BGO endcap calorimeter, 7 – CsI(Tl,Na) barrel calorimeter, 8 – muon range system, 9 – iron yoke, 10- storage ring lenses

Available data near ρ, ω, φ – resonances Energy region Integrated luminosity (SND/CMD-2) ω,ρ – resonances 10 pb-1/8pb-1 φ – resonance 13 pb-1/ 16pb-1 List of considered radiative and rare decays V→P0P0 φ→ π0 π0, φ→η π0, → π0π0, ρ→ π0 π0 V→P0 φ→η'  , φ→η , φ→ π0 , →η, → π0, ρ → η, ρ → π0 rare hadron decays  0, π+π−, π+π− π+π− ρ  π+π−0, π+π− π+π− → π+π−

V → P0 P0 decays Vector Dominance Model (V → V′ P →P P  ) Coupling of φ – meson into scalars (a0, f0) through K±-loops was suggested by Achasov, Ivanchenko (1989) Parameters of decays depend on structure of scalars ( qq or 2(qq) ) Extension of Chiral Perturbation Theory for V→P0P0 decays developed by Bramon et al (1992)

V → P0 P0 decays Experiments: GAMS (first measurement, ω → π0π0) (1994) SND, CMD-2 (φ → π0π0 ; φ → η π0; ω,ρ→ π0π0 )(1997,2000) KLOE (φ → π0π0 ; φ → η π0) After decays parameters ( branching fractions, invariant mass spectra MPP) were measured further theory development occurred: Chiral Perturbation Theory [2,3] UχPT (Unitarized ChPT) [1] Linear Sigma Model (LσM), [2,3] Kaon Loops [4] Direct Coupling (No Structure)[5] 1. E. Marco et al., Phys.Lett.B470 (1999) 20; 2.A.Bramon et al., Phys. Rev. D69(2004)074008; 3. R.Escribano, Nucl. Phys. Proc. Suppl. 126 (2004) 204; 4. N.N.Achasov and A.V.Kiselev, Phys. Rev. D73(2006)054029; 5. G.Isidori et al., J.High Energy Phys. 05(2006)049; And many others.

Study of φ → π0π0 decay Experimental results and theoretical calculations of branching fraction of φ → π0π0 decay: Experiment B(φ → π0π0) ·104 (ωπ° subtracted) SND (1.158±0.093±0.052) CMD-2 (1.08±0.17±0.09) SND&CMD-2 (1.14 ± 0.095) KLOE (1.07 ± 0.06) Models B(φ → π0π0) VDM (φ→ρ0π0→π0π0 ) 1.2·10−5 ChPT 5.1·10-5 VDM+ChPT (6.1-6.4)·10-5 LσM 1.16·10-4 (Mf0,ΦS) VDM+LσM 1.19·10-4 Achasov (qq) / (qq)2 (4.5-5.4) ·10-5 / 2.5·10-4

π0π0 invariant mass spectra fits SND Comparison of invariant mass Mππ spectra for SND, CMD-2 and KLOE detectors. CMD-2 VDM predicts too small value of φ → π0π0 branching fraction Scalar meson contributions are needed to describe Mππ spectrum SND and CMD-2 data are described with only one scalar f0(980) but KLOE spectrum shows that 2 scalars ( f0 and σ ) are necessary KLOE study also shows that data can be fitted by several models

Study of φ → η π0 decay Experiment Experimental results and theoretical calculations of branching fraction of φ → η π0 decay: Experiment B(φ → η π0) ·104 SND 0.88±0.14±0.09 CMD-2 0.90±0.24±0.10 SND&CMD-2 0.89±0.15 KLOE 0.695±0.026 Models B(φ → η π0) VDM 5.4·10-6 ChPT 3.0·10-5 VDM+ChPT (3.4-3.6)·10-5 LσM (7.5-9.5)·10-5 (Ma0,Φρ) Achasov (qq) / (qq)2 2.4·10-5 / 2.0·10-4

ηπ0 invariant mass spectra fits SND KLOE VDM predicts too small value of branching fraction Scalar meson contribution is needed to describe Mηπ spectrum SND and CMD-2 data are described with one scalar a0(980) as well as KLOE data KLOE study also shows that data can be fitted by several models

Study of ω,ρ → π0π0 decays Models B(ρ→ π0π0) VDM 1.1·10-5 (via ωπ ) Experiment B(ω → π0π0) ·105 B(ρ→ π0π0) ·105 SND CMD-2 SND&CMD-2 Models B(ω → π0π0) B(ρ→ π0π0) VDM 3.2·10-5 1.1·10-5 (via ωπ ) ChPT 5.1·10-5 9.5·10-6 VDM+ChPT (4.7±1.1)·10-5 2.6·10-5 VDM+ LσM (4.5±1.1)·10-5 3.8·10-5 Fitted cross section for e+e−→ π0π0 , red line – without contribution of ρ → σ .

Study of ω,ρ → π0π0 decays Measured values of branching fractions B (ω → π0π0) and B(ρ→ π0π0) significantly exceed VDM predictions. For ρ→ π0π0 decay the difference can be explained by contribution of σ(600) transition through π±-loops. But for 00 the mechanism with - and K-loops is expected to be small because of small value of ρ- mixing. One can see that the angular spectrum does not allow to separate different mechanisms of 00 decay with available statistics. Angle of the photon in π0π0 rest frame. Solid line – pure ω → ρπ0, dashed - mixture of ρπ0 and σ states.

Study of magnetic dipole V → P0 decays SND CMD-2 SND&CMD-2 Other B(φ → η)·10-2 1.364 ±0.023± 0.029 1.338 ± 0.012 ± 0.052 1.373 ± 0.010 ± 0.085 1.287 ± 0.013 ± 0.063 1.18 ± 0.03 ± 0.06 1.325 ± 0.025 1.2 ± 0.06 (PDG96) B(ω → η)·10-4 4.33 ±0.44 ± 0.13 4.44 ± 2.29 ± 0.28 5.10 ± 0.72 ± 0.34 4.52 ± 0.39 6.5 ± 1.0 (PDG96) B(ρ → η)·10-4 2.82 ±0.30 ± 0.18 3.21 ± 1.39 ± 0.20 3.28 ± 0.37 ± 0.23 3.01 ± 0.27 2.4+0.8-0.9 (PDG96) B(φ → π0)·10-3 1.34 ±0.07 ± 0.07 1.226± 0.036± 0.096 1.258 ± 0.037 ± 0.077 1.285 ± 0.072 1.31 ± 0.13 (PDG96) B(ω → π0)·10-2 9.34 ±0.15 ±0.31 8.45 ± 0.09 ±0.25 9.06 ± 0.20 ± 0.57 8.55 ± 0.24 8.5 ± 0.5 (PDG96) B(ρ → π0)·10-4 5.15 ±1.16 ±0.73 5.32 ±0.63 ±0.50 6.21 ± 1.28 ± 0.39 5.56 ± 0.69 6.8 ± 1.79 (PDG96) B(φ → η′)·10-5 6.7 ± 5.0 ± 1.5 6.7 ± 2.8 ± 0.8 8.2 ± 2.1 ± 1.1 4.9 ± 2.2 ± 0.6 6.49 +1.38-1.20 6.23 ± 0.27 ± 0.12 (KLOE06)

Example of coupling constant Fit to V → P0 data Model described in Escribano, Nadal, hep-ph/0703187 Measured values of coupling constants |η > =Xη |ηq> +Yη |ηs> + Zη |G> |η'> =Xη'|ηq> +Yη' |ηs> + Zη' |G> decays gVP (GeV-1) φ → η 0.211 ± 0.002 ω → η 0.135 ± 0.006 ρ → η 0.480 ± 0.022 φ → π0 0.041 ± 0.001 ω → π0 0.703 ± 0.010 ρ → π0 0.243 ± 0.015 φ → η' 0.221 ± 0.023 φ → η′ (KLOE) 0.216 ± 0.005 In the absence of gluonium in η and η΄ states Zη = Zη' =0, and mixing parameterization has standard form: |η > =cos ΦP |ηq> - sin ΦP |ηs>, |η' > =sin ΦP |ηq> + cos ΦP |ηs>, For vector states: |ω > =cos ΦV|ωq> - sin ΦV|ωs>, |φ > =sin ΦV |ω q> + cos ΦV|ωs>, If Zη or Zη' ≠0, additional mixing angles appear: ΦηG or Φη'G . Ratios of VP wave-function overlap integrals (zq=Cq/Cπ, zs=Cs/Cπ) are also fitted. So we have the following set of parameters to be fitted: g, ΦV, ΦP, zq, zs· m/ms , ΦηG , Φη'G . Example of coupling constant parameterization:

Result of fit of V → P0 data The fits are based on following decays: φ,ω,ρ→π0, φ,ω,ρ→ η (SND+CMD-2) , φ → η′(KLOE), η′ → ω  ,ρ (PDG): Fit 1: ΦηG = Φη'G = 0: g = 0.705 ± 0.010 GeV-1;ΦV =(3.34 ± 0.09)°; ΦP=(42.00 ± 0.65)°; Zq=0.87 ± 0.03; Zs·m/ms =0.64 ± 0.01; χ2=2.7/4 Fit 2: ΦηG = 0: ΦP=(41.7 ± 1.0)°; Zq=0.87 ± 0.03; Zs·m/ms=0.65 ± 0.02; |Φη'G|= (−10±12)°; χ2=2.5/3 Fit 3: Φ η'G = 0: Zs·m/ms=0.64 ± 0.01; |ΦηG|= (0 ±13)°; χ2=2.7/3 decays gVP (GeV-1) experiment gVP (GeV-1) FIT 2 φ → π0 0.041 ± 0.001 0.041 ω → π0 0.703 ± 0.010 0.704 ρ → π0 0.243 ± 0.015 0.235 φ → η 0.211 ± 0.002 0.211 ω → η 0.135 ± 0.006 0.140 ρ → η 0.480 ± 0.022 0.457 η′ → ω (PDG) 0.139 ±0.015 0.146 η′ → ρ 0.41 ± 0.03 0.400 φ → η′ (KLOE) 0.216 ± 0.005 0.216 Using Φη'G from FIT 2, we calculated admixture of gluonium in η′ : |Zη'|2 = 0.03+0.05−0.03

OZI and G parity suppressed decays: φ → ωπ0 As there is non resonance process e+e− → ρ,ρ′ → ωπ0, decay φ → ωπ0 can be observed only through interference pattern, which looks as a dip in cross section energy dependence. SND SND: B(φ → ωπ0) = (5.5 +1.6−1.4 ± 0.3)· 10−5 In ω → π+π−π0 mode parameters of interference are: Re Z = 0.108 ± 0.016 Im Z = −0.125 ± 0.020 KLOE: B(φ → ωπ0) = (5.63 ± 0.70)· 10−5 In same mode: Re Z = 0.097 ± 0.012 Im Z = −0.133 ± 0.009 Cross section of e+e− → ωπ0 process with interference pattern The models taking into account φ →ω →ρ and φ →*→ρ transitions cannot explain values of B(φ → ωπ0), Re Z and Im Z . Further theoretical study is needed.

OZI and G parity suppressed decays: φ → π+π−, π+π−π+π− SND SND: B(φ → π+π−) = (7.1 ± 1.4)· 10−5 Parameters of interference are: Re Z = 0.061 ± 0.006 Im Z = −0.041 ± 0.007 CMD-2: B(φ → π+π− π+π−) = (3.9 ± 2.8)· 10−5 Parameters of interference are: Re Z = 0.122 ± 0.040 Im Z = −0.003 ± 0.063 Cross section of e+e− →π+π− Similar to φ → ωπ0 decay theoretical models cannot describe measured parameters for φ → π+π− decay. While data for φ → π+π− π+π− decay is in good agreement with φ →*→ρ mechanism of φ – ρ mixing. CMD-2 Cross section of e+e− →π+π− π+π−

ρ–ω mixing and ω → π+π−, ρ → π+π−π0 decays Simple model of ρ–ω mixing can be written in the following way: (here ωI and ρI – pure states, Πρω – polarizations operator of ρ–ω mixing) Cross section of e+e− → π+π− process Pion form factor for e+e− → π+π− process was parameterized in the following way: Higher order resonances were also taken into account (ρ′, ρ′′). SND: B(ω → π+π−) = (1.71 ± 0.10)· 10−2 Φρω= (113.7 ± 2.4) ° Assuming that ω → π+π− proceeds only through ρ–ω mixing (gIωππ = 0) it was calculated that Φρω≈101°. For ρ → π+π−π0 this angle is expected to be Φρω= −90°. CMD-2: B(ω → π+π−) = (1.46 ± 0.12)· 10−2 (only ρ–ω mixing was taking into account)

ρ–ω mixing and ω → π+π−, ρ → π+π−π0 decays Cross section of e+e− → π+π−π0 was fitted as a sum of ρ,ω, ω,′ ω′′ resonances. Fit without ρ gives bad χ2. SND: B(ρ → π+π−π0) = (1.01+0.54−0.36 ± 0.034) ·10−4 Φρω= (−135+17−13 ± 9)° Value of angle Φρω has 2σ deviation from the expected one Φρω= −90°. Cross section of e+e− → π+π−π0 process for ω → π+π− decay mixing angle Φρω differs by 6σ from expected one in simple ρ–ω mixing model for ρ → π+π−π0 decay obtained value of Φρω doesn’t contradict simple model of ρ–ω mixing calculation of Φρω for ρ → π+π−π0 decay based on parameters of ρ–ω mixing obtained in e+e− → π+π− fit gives rather small value of Φρω~ −45° contradicting with experimental value. More theoretical input is needed.

Search for ρ → π+π−π+π− decay The yellow region corresponds to the extrapolation of the energy dependence of the cross section from the energy region above 1.05 GeV. It was assumed that the cross section is determined by *→ρ, ρ′→ a1 (1260) π → π+π−π+π− transition. To compare the obtained experimental data with existing theoretical predictions, it is useful to evaluate the cross section of the process at the cms energy corresponding to the ρ-meson mass. The cross section was determined in the energy range 0.75–0.8 GeV : σρ = (0.020 ± 0.010 ± 0.003) nb. This cross section corresponds to following value of branching fraction: CMD-2 Cross section of e+e− → π+π− π+π− process CMD-2: B(ρ → π+π− π+π−) = (1.8 ± 0.95)· 10−5

Conclusions From 1993 to 2000 SND and CMD-2 detectors collected about 60 pb-1 of data Several decays were observed for the first time: φ → π0π0, φ → η π0, ρ → π0π0, φ → η′, φ  ωπ0, etc. Branching fractions of many decays were measured with the best accuracy: φ → π0, φ → η , ω → π0, ω → η, ρ → π0, ρ → η, etc. Study of electric dipole decays of ρ, ω, φ-mesons showed that the main mechanism is transition to light scalars f0(980), a0(980) and σ. The data on magnetic dipole radiative transitions can be described in the frame of simple quark model. The gluonium admixture in η′ is compatible with zero OZI and G-parity suppressed decays φ  ωπ0, 2π, 4π were measured. Observed decay amplitudes for φ 2π and φ  ωπ0 cannot be explained by single photon transition mechanism. Branching fractions of ω → π+π−, ρ → π+π−π0 decays were measured. For ω → π+π− phase of ρ–ω mixing differs by 6 standard deviations from expected in simple ρ–ω mixing model. Indications of ρ → π+π−π+π− decay were obtained for the first time. More data are needed for a complete study.

Comparison of invariant mass Mππ and Mηπ spectra for SND and CMD-2 detectors Results of Mππ and Mηπ fits for SND and CMD-2 Data with Kaon Loop model (N.Achasov) ○ - SND ■ - CMD-2 Fit results SND CMD-2 Mf0 (MeV) 969.8 ± 4.5 977 ± 6.7 g2π π /4π (GeV2) 0.40 ± 0.06 g2K K /4π(GeV2) 2.44 ± 0.73 B(φ→f0)·104 g2K K / g2π π 4.6 ± 0.6 6.1 ± 2.0 ○ - SND ■ - CMD-2 Fit results SND CMD M a0(MeV) 995+52 -10 ----- g2η π /4π(GeV2) 0.77 +1.29 -0.20 g2K K /4π(GeV2) 1.4 +9.4 -0.9 B(φ→ a0)·104 0.88±0.17 0.90±0.26

ρ–ω mixing and ω → π+π−, ρ → π+π−π0 decays Pion formfactor for e+e− → π+π− process was fitted in the following way: SND High order resonances were also taken into account (ρ′, ρ′′). SND: B(ω → π+π−) = (1.71 ± 0.10)· 10−2 Φρω= (113.7 ± 2.4) ° Cross section of e+e− → π+π− process CMD-2: B(ω → π+π−) = (1.46 ± 0.12)· 10−2 (only ρ–ω mixing was taking into account) SND Cross section was fit as a sum of ρ,ω, ω,′ ω′′ resonances. Fit without ρ gives bad χ2. SND: B(ρ → π+π−π0) = (1.01+0.54−0.36 ± 0.034) ·10−4 Φρω= (−135 ± 1713 ± 9)° Value of cross section of ρ → π+π−π0 corresponds to standard ρ–ω mixing and angle differs 2σ deviation from expected one Φρω= −90° Cross section of e+e− → π+π−π0 process