Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Βάσεις Δεδομένων 2009-2010Ευαγγελία Πιτουρά1 Σχεσιακή Άλγεβρα.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Βάσεις Δεδομένων 2009-2010Ευαγγελία Πιτουρά1 Σχεσιακή Άλγεβρα."— Μεταγράφημα παρουσίασης:

1 Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Σχεσιακή Άλγεβρα

2 Βάσεις Δεδομένων Ευαγγελία Πιτουρά2 Εισαγωγή Στα προηγούμενα μαθήματα:  Εννοιολογικός Σχεδιασμός Βάσεων Δεδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)  Λογικός Σχεδιασμός Βάσεων Δεδομένων (με χρήση του Σχεσιακού Μοντέλου)  Αντιστοιχία (μετατροπή) ανάμεσα στα μοντέλα  (Υλοποίηση) Πως θα ορίσουμε το σχήμα σε ένα ΣΔΒΔ και πως θα δημιουργήσουμε και τροποποιήσουμε ένα στιγμιότυπο

3 Βάσεις Δεδομένων Ευαγγελία Πιτουρά3 Εισαγωγή Μετά τη φάση του σχεδιασμού, καταλήγουμε σε ένα σχεσιακό σχήμα. Δυο ερωτήματα 1.Είναι ο σχεδιασμός μας καλός; Θεωρία Κανονικών Μορφών 2.Πως θα κάνουμε ερωτήσεις; Αρχικά το θεωρητικό μοντέλο (σχεσιακή άλγεβρα) Στη συνέχεια την «υλοποίηση» (SQL) Θα αρχίσουμε από το ερώτημα 2

4 Βάσεις Δεδομένων Ευαγγελία Πιτουρά4 Εισαγωγή Τι χρειαζόμαστε: (Η Γενική Εικόνα) Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για τον ορισμό των σχημάτων) ένας μεταφραστής της ΓΟΔ επεξεργάζεται τις εντολές της ΓΟΔ, αναγνωρίζει τις περιγραφές των δομικών στοιχείων του σχήματος και αποθηκεύει την περιγραφή του σχήματος στον κατάλογο του ΣΔΒΔ Μια γλώσσα χειρισμού δεδομένων ΓΧΔ  γλώσσα ενημέρωσης  γλώσσα ερωτήσεων (επερωτήσεων) (Query Language) Την είδαμε

5 Βάσεις Δεδομένων Ευαγγελία Πιτουρά5 Γλώσσες Ερωτήσεων: Εισαγωγή Το σχεσιακό μοντέλο υποστηρίζει απλές και ισχυρές γλώσσες ερωτήσεων (σε αντίθεση με το μοντέλο Ο/Σ) Γλώσσες Ερωτήσεων (Query Languages): Επιτρέπουν τον χειρισμό και την εύρεση πληροφορίας από μια βάση δεδομένων Με τη διατύπωση ερωτήσεων στον τρέχων στιγμιότυπο της βάσης δεδομένων (querying)

6 Βάσεις Δεδομένων Ευαγγελία Πιτουρά6 Εισαγωγή «Υψηλού επιπέδου» γλώσσες (επε)-ερωτήσεων (SQL – QBE) Η SQL είναι και ΓΟΔ και ΓΧΔ «Χαμηλού επιπέδου» γλώσσες ερωτήσεων (σχεσιακή άλγεβρα – σχεσιακός λογισμός) θεωρία πως από στιγμιότυπα -> νέα στιγμιότυπα oμε εφαρμογή πράξεων – τελεστών (σχεσιακή άλγεβρα) oμε λογικούς κανόνες (σχεσιακός λογισμός)

7 Βάσεις Δεδομένων Ευαγγελία Πιτουρά7 Σχεσιακή Άλγεβρα Υπενθύμιση (Σχεσιακή) Βάση Δεδομένων ένα σύνολο από σχέσεις (πίνακες) Γραμμές: πλειάδες Στήλες: Γνωρίσματα Κλειδί (υπερ-κλειδί, υποψήφιο, πρωτεύον)

8 Βάσεις Δεδομένων Ευαγγελία Πιτουρά8 Σχεσιακή Άλγεβρα Σχεσιακή άλγεβρα: έναν απλό τρόπο δημιουργίας νέων σχέσεων από υπάρχουσες. Ένα σύνολο από πράξεις που όταν εφαρμοστούν σε σχέσεις (πίνακες) μας δίνουν νέες σχέσεις Μια ερώτηση εφαρμόζεται σε ένα στιγμιότυπο σχέσης και το αποτέλεσμα της ερώτησης είναι πάλι ένα στιγμιότυπο σχέσης

9 Βάσεις Δεδομένων Ευαγγελία Πιτουρά9 Σχεσιακή Άλγεβρα Ποιοι είναι κατάλληλοι τελεστές; Ελάχιστος αριθμός;

10 Βάσεις Δεδομένων Ευαγγελία Πιτουρά10 Σχεσιακή Άλγεβρα Οι πράξεις τις σχεσιακής άλγεβρας: 1. Πράξεις που αφαιρούν κομμάτια από μια σχέση είτε επιλέγοντας γραμμές είτε προβάλλοντας στήλες 2. Οι συνηθισμένες πράξεις συνόλου - ένωση, τομή, διαφορά 3. Πράξεις που συνδυάζουν πλειάδες από δύο σχέσεις 4. Μετονομασία γνωρισμάτων

11 Βάσεις Δεδομένων Ευαγγελία Πιτουρά11 Η Πράξη της Επιλογής Η πράξη της επιλογής (select) σ ( ) Επιλογή ενός υποσυνόλου των πλειάδων μιας σχέσης που ικανοποιεί μια συνθήκη επιλογής

12 Βάσεις Δεδομένων Ευαγγελία Πιτουρά12 Η Πράξη της Επιλογής σ ( ) Επιλογή ενός υποσυνόλου των πλειάδων μιας σχέσης που ικανοποιεί μια συνθήκη επιλογής =, >, <, , ,  συνδυασμένες με AND, OR, NOT ή προτάσεις της μορφής συνθήκη

13 Βάσεις Δεδομένων Ευαγγελία Πιτουρά13 Παράδειγμα ΤαινίαΤίτλος Έτος Διάρκεια Είδος Παίζει Όνομα-Ηθοποιού Τίτλος Έτος Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Ηθοποιός

14 Βάσεις Δεδομένων Ευαγγελία Πιτουρά14 Η Πράξη της Επιλογής Παραδείγματα τίτλος χρόνοςδιάρκειαείδος Star Wars έγχρωμη Mighty Ducks έγχρωμη Wayne’s World έγχρωμη 1. Ταινίες με διάρκεια μεγαλύτερη των 100 λεπτών) σ διάρκεια > 100 (Ταινία) τίτλος χρόνοςδιάρκειαείδος Star Wars έγχρωμη Mighty Ducks έγχρωμη

15 Βάσεις Δεδομένων Ευαγγελία Πιτουρά15 Η Πράξη της Επιλογής τίτλος χρόνοςδιάρκειαείδος Star Wars έγχρωμη Mighty Ducks έγχρωμη Wayne’s World έγχρωμη 2. Ταινίες με διάρκεια μεγαλύτερη των 100 λεπτών που γυρίστηκαν μετά το 1995 σ διάρκεια > 100 AND χρόνος > 1995 (Ταινία) τίτλος χρόνοςδιάρκειαείδος Star Wars έγχρωμη

16 Βάσεις Δεδομένων Ευαγγελία Πιτουρά16 Η Πράξη της Επιλογής Η συνθήκη επιλογής εφαρμόζεται ανεξάρτητα σε κάθε πλειάδα Ο τελεστής είναι μοναδιαίος Ο βαθμός της σχέσης που προκύπτει ίδιος με τον βαθμό της αρχικής σχέσης Πλήθος πλειάδων μικρότερο ή ίσο με την αρχική σχέση: ποσοστό που επιλέγονται - επιλεκτικότητα (selectivity)

17 Βάσεις Δεδομένων Ευαγγελία Πιτουρά17 Η Πράξη της Επιλογής Ιδιότητες αντιμεταθετική σ (σ (R)) = σ (σ (R)) σ (σ ( … σ (R)..)) = σ AND... AND (R)

18 Βάσεις Δεδομένων Ευαγγελία Πιτουρά18 Η Πράξη της Προβολής Η πράξη της προβολής (project) π ( ) Επιλογή συγκεκριμένων στηλών (γνωρισμάτων)

19 Βάσεις Δεδομένων Ευαγγελία Πιτουρά19 Η Πράξη της Προβολής Παραδείγματα τίτλος χρόνοςδιάρκειαείδος Star Wars έγχρωμη Mighty Ducks έγχρωμη Wayne’s World έγχρωμη

20 Βάσεις Δεδομένων Ευαγγελία Πιτουρά20 Η Πράξη της Προβολής 1. Τίτλος, χρόνος, διάρκεια των ταινιών π τίτλος, χρόνος, διάρκεια (Ταινία) τίτλος χρόνοςδιάρκεια Star Wars Mighty Ducks Wayne’s World

21 Βάσεις Δεδομένων Ευαγγελία Πιτουρά21 Η Πράξη της Προβολής 2. Είδος ταινιών π είδος (Ταινία) είδος έγχρωμη Προσοχή: απαλοιφή διπλότιμων Γιατί; Με βάση τον ορισμό το αποτέλεσμα είναι σχέση (δηλαδή, σύνολο πλειάδων)

22 Βάσεις Δεδομένων Ευαγγελία Πιτουρά22 Η Πράξη της Προβολής Τα γνωρίσματα έχουν την ίδια διάταξη Ο τελεστής είναι μοναδιαίος Ο βαθμός της σχέσης είναι ίσος με τον αριθμό γνωρισμάτων στη Πλήθος πλειάδων μικρότερο ή ίσο (πότε;) με την αρχική σχέση

23 Βάσεις Δεδομένων Ευαγγελία Πιτουρά23 Η Πράξη της Προβολής Ιδιότητες αντιμεταθετική; π (π (R)) = ?

24 Βάσεις Δεδομένων Ευαγγελία Πιτουρά24 Σχεσιακή Άλγεβρα διάρκεια Παράδειγμα Διάρκειες μεγαλύτερες των 100 λεπτών π διάρκεια (σ διάρκεια > 100 (Ταινία))

25 Βάσεις Δεδομένων Ευαγγελία Πιτουρά25 Πράξεις Συνόλου Πράξεις συνόλου Ένωση (  ) Τομή (  ) Διαφορά (-) Συμβατότητα ως προς την ένωση Δύo σχέσεις R(A 1, A 2, …, A n ) και S(B 1, B 2, …, B n ) είναι συμβατές ως προς την ένωση όταν 1. Έχουν τον ίδιο βαθμό n 2.  i, dom(A i ) = dom(B i )

26 Βάσεις Δεδομένων Ευαγγελία Πιτουρά26 Πράξεις Συνόλου Σύμβαση: η προκύπτουσα σχέση έχει τα ίδια ονόματα γνωρισμάτων με την πρώτη σχέση Απαλοιφή διπλότιμων

27 Βάσεις Δεδομένων Ευαγγελία Πιτουρά27 Σχεσιακή Άλγεβρα Οι πράξεις τις σχεσιακής άλγεβρας: 1. Πράξεις που αφαιρούν κομμάτια από μια σχέση είτε επιλέγοντας γραμμές είτε προβάλλοντας στήλες 2. Οι συνηθισμένες πράξεις συνόλου - ένωση, τομή, διαφορά 3. Πράξεις που συνδυάζουν πλειάδες από δύο σχέσεις 4. Μετονομασία γνωρισμάτων  

28 Βάσεις Δεδομένων Ευαγγελία Πιτουρά28 Σχεσιακή Άλγεβρα Α Β σ Α > Β (R) Π Α (R) R B C S R  S R  S R - S S - R Παράδειγμα

29 Βάσεις Δεδομένων Ευαγγελία Πιτουρά29 Μετονομασία R  όνομα στην ενδιάμεση σχέση ΜΕΓΑΛΗΣ_ΔΙΑΡΚΕΙΑΣ  σ διάρκεια > 100 (Ταινία) Παράδειγμα

30 Βάσεις Δεδομένων Ευαγγελία Πιτουρά30 Μετονομασία R(λίστα-με-νέα-ονόματα)  μετονομασία γνωρισμάτων ΜΕΓΑΛΗΣ_ΔΙΑΡΚΕΙΑΣ (όνομα ταινίας, έτος παραγωγής, διάρκεια, είδος)  σ διάρκεια > 100 (Ταινία) Παράδειγμα όνομα ταινίας έτος παραγωγής διάρκειαείδος Star Wars έγχρωμη Mighty Ducks έγχρωμη

31 Βάσεις Δεδομένων Ευαγγελία Πιτουρά31 Καρτεσιανό Γινόμενο R(A 1, A 2, …, A n ) x S(B 1, B 2, …, B m ) (ή χιαστί γινόμενο (cross product) ή χιαστί συνένωση (cross join)) αποτέλεσμα η σχέση Q: Q(A 1, A 2, …, A n, B 1, B 2, …, B m ) n + m γνωρίσματα n R * n S πλειάδες

32 Βάσεις Δεδομένων Ευαγγελία Πιτουρά32 Καρτεσιανό Γινόμενο Α Β B’ C D RS R x S A B B’ C D

33 Βάσεις Δεδομένων Ευαγγελία Πιτουρά33 Παράδειγμα ΤαινίαΤίτλος Έτος Διάρκεια Είδος Παίζει Όνομα-Ηθοποιού Τίτλος Έτος Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Ηθοποιός

34 Βάσεις Δεδομένων Ευαγγελία Πιτουρά34 Καρτεσιανό Γινόμενο Ταινία Τίτλος Έτος Διάρκεια Είδος Παραμύθι Έγχρωμη Παραμύθι Ασπρόμαυρη Φυγή200098Ασπρόμαυρη Άνοιξη Έγχρωμη Όνομα-ΗθοποιούΤίτλοςΈτος Αλίκη ΠαππάΠαραμύθι1930 Μαρία ΓεωργίουΠαραμύθι1990 Κώστας ΧρήστουΦυγή2000 Μαρία ΣτεργίουΆνοιξη1998 Παίζει

35 Βάσεις Δεδομένων Ευαγγελία Πιτουρά35 Καρτεσιανό Γινόμενο Ταινία Ταινία.ΤίτλοςΤαινία.Έτος Διάρκεια Είδος Παραμύθι199090Έγχρωμη Παραμύθι Ασπρόμαυρη Φυγή200098Ασπρόμαυρη Άνοιξη Έγχρωμη Όνομα-ΗθοποιούΠαίζει.ΤίτλοςΠαίζει.Έτος Αλίκη ΠαππάΠαραμύθι1930 Μαρία ΓεωργίουΠαραμύθι1990 Κώστας ΧρήστουΦυγή2000 Μαρία ΣτεργίουΆνοιξη1998 Κατερίνα ΑποστόλουΦυγή2000 Παίζει Ταινία.ΤίτλοςΤαινία.Έτος Διάρκεια Είδος Όνομα-ΗθοποιούΠαίζει.ΤίτλοςΠαίζει.Έτος Παραμύθι ΈγχρωμηΑλίκη ΠαππάΠαραμύθι1930 Παραμύθι Έγχρωμη Μαρία ΓεωργίουΠαραμύθι1990 Παραμύθι Έγχρωμη Κώστας ΧρήστουΦυγή2000 Παραμύθι Έγχρωμη Μαρία ΣτεργίουΆνοιξη1998 Παραμύθι Έγχρωμη Κατερίνα ΑποστόλουΦυγή2000 Παραμύθι Ασπρόμαυρη Αλίκη ΠαππάΠαραμύθι1930 Παραμύθι Ασπρόμαυρη Μαρία ΓεωργίουΠαραμύθι1990 Παραμύθι Ασπρόμαυρη Κώστας ΧρήστουΦυγή2000 Παραμύθι Ασπρόμαυρη Μαρία ΣτεργίουΆνοιξη1998 Παραμύθι Ασπρόμαυρη Κατερίνα ΑποστόλουΦυγή2000 Φυγή200098Ασπρόμαυρη Αλίκη ΠαππάΠαραμύθι1930 …

36 Βάσεις Δεδομένων Ευαγγελία Πιτουρά36 Καρτεσιανό Γινόμενο Για κάθε ηθοποιό το όνομα και τον τίτλο-έτος για όλες τις έγχρωμες ταινίες στις οποίες παίζει Παράδειγμα

37 Βάσεις Δεδομένων Ευαγγελία Πιτουρά37 Καρτεσιανό Γινόμενο Για κάθε ηθοποιό το όνομα και τον τίτλο-έτος για όλες τις έγχρωμες ταινίες στις οποίες παίζει Παράδειγμα π όνομα, τίτλος, έτος (σ είδος = “έγχρωμη” AND Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος = Ταινία.έτος (Παίζει x Ταινία)) π όνομα, τίτλος, έτος (σ Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος =Ταινία.έτος (Παίζει x (σ είδος = “έγχρωμη” (Ταινία))) ή

38 Βάσεις Δεδομένων Ευαγγελία Πιτουρά38 Συνένωση Συνένωση (ή θήτα συνένωση) (join) συνδυασμός σχετιζόμενων πλειάδων R S (  σ (R x S) ) =, >, <, , ,  Συνθήκη συνένωσης A i B j όπου A i γνώρισμα της R, B j γνώρισμα της S, και dom(A i ) = dom(B j ) Προτάσεις της μορφής συνδυασμένες με AND

39 Βάσεις Δεδομένων Ευαγγελία Πιτουρά39 Συνένωση το αποτέλεσμα είναι οι συνδυασμοί πλειάδων που ικανοποιούν τη συνθήκη η συνθήκη αποτιμάται για κάθε συνδυασμό αποτέλεσμα σχέση Q με n + m γνωρίσματα πλειάδες με τιμή null σε γνώρισμα συνένωσης δεν εμφανίζονται στο αποτέλεσμα

40 Βάσεις Δεδομένων Ευαγγελία Πιτουρά40 Συνένωση B’ C’ D UV Α Β C U A < D V A B C B’ C’ D U A

41 Βάσεις Δεδομένων Ευαγγελία Πιτουρά41 Συνένωση Για κάθε ηθοποιό το όνομα και τον τίτλο-έτος για όλες τις έγχρωμες ταινίες στις οποίες παίζει Παράδειγμα π όνομα, τίτλος, έτος (σ Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος =Ταινία.έτος (Παίζει x (σ είδος = “έγχρωμη” (Ταινία))) π όνομα, τίτλος, έτος (Παίζει Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος =Ταινία.έτος (σ είδος = “έγχρωμη” (Ταινία))

42 Βάσεις Δεδομένων Ευαγγελία Πιτουρά42 Συνένωση Ισότητας Συνένωση Ισότητας (equijoin) Συνθήκη συνένωσης A i = B j όπου A i γνώρισμα της R, B j γνώρισμα της S, και dom(A i ) = dom(B j ) Προτάσεις της μορφής συνδυασμένες με AND όταν χρησιμοποιείται μόνο τελεστής ισότητας

43 Βάσεις Δεδομένων Ευαγγελία Πιτουρά43 Συνένωση Ισότητας Α Β B’ C D RS A B B’ C D RSRS R.B = S.B

44 Βάσεις Δεδομένων Ευαγγελία Πιτουρά44 Φυσική Συνένωση συνένωση ισότητας όπου παραλείπουμε το γνώρισμα της δεύτερης σχέσης από το αποτέλεσμα όταν διαφορετικό όνομα - μετονομασία R * (λίστα1, λίστα2) S επιλεκτικότητα συνένωσης: μέγεθος αποτελέσματος / (n r * n s )

45 Βάσεις Δεδομένων Ευαγγελία Πιτουρά45 Φυσική Συνένωση Α Β B C D RSR * S A B C D

46 Βάσεις Δεδομένων Ευαγγελία Πιτουρά46 Φυσική Συνένωση B C D UV Α Β C U * V A B C D

47 Βάσεις Δεδομένων Ευαγγελία Πιτουρά47 Φυσική Συνένωση Για κάθε ηθοποιό το όνομα και τον τίτλο-έτος για όλες τις έγχρωμες ταινίες στις οποίες παίζει Παράδειγμα π όνομα, τίτλος, έτος (σ Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος =Ταινία.έτος (Παίζει x (σ είδος = “έγχρωμη” (Ταινία))) π όνομα, τίτλος, έτος (Παίζει * (σ είδος = “έγχρωμη” (Ταινία))) είναι η τρίτη έκφραση πριν την προβολή ισοδύναμη των άλλων δύο; π όνομα, τίτλος, έτος (Παίζει Παίζει.τίτλος = Ταινία.τίτλος AND Παίζει.έτος =Ταινία.έτος (σ είδος = “έγχρωμη” (Ταινία))

48 Βάσεις Δεδομένων Ευαγγελία Πιτουρά48 Σχεσιακή Άλγεβρα Α Β R B C S R x S R R.a >= S.b S R R.a = S.b SR * S Παράδειγμα

49 Βάσεις Δεδομένων Ευαγγελία Πιτουρά49 Σχεσιακή Άλγεβρα Πλήρες σύνολο πράξεων επιλογή (σ) προβολή (π) διαφορά (-) ένωση (  ) καρτεσιανό γινόμενο (x) Επίσης τομή (  ) συνένωση συνένωση ισότητας φυσική συνένωση (*)

50 Βάσεις Δεδομένων Ευαγγελία Πιτουρά50 Σχεσιακή Άλγεβρα (ανακεφαλαίωση) Το σχεσιακό μοντέλο υποστηρίζει απλές και ισχυρές γλώσσες ερωτήσεων Γλώσσες Ερωτήσεων (Query Languages): Επιτρέπουν το χειρισμό και την εύρεση πληροφορίας από μια βάση δεδομένων

51 Βάσεις Δεδομένων Ευαγγελία Πιτουρά51 Γλώσσες Ερωτήσεων: Εισαγωγή Σχεσιακή Άλγεβρα: Λειτουργική “operational” (database byte-code!): αποτελείται από ένα σύνολο τελεστών και περιγράφει τα βήματα για τον υπολογισμό του αποτελέσματος Σχεσιακός Λογισμός (calculus): Επιτρέπει στους χρήστες να περιγράψουν τι θέλουν αλλά όχι πώς να το υπολογίσουν Δύο μαθηματικές γλώσσες ερωτήσεων αποτελούν τη βάση για τις πραγματικές γλώσσες ερωτήσεων (π.χ., SQL) και για την υλοποίησή τους Αυτές οι τυπικές γλώσσες επηρέασαν τις εμπορικές γλώσσες (SQL, QBE) που θα δούμε στα επόμενα μαθήματα

52 Βάσεις Δεδομένων Ευαγγελία Πιτουρά52 Σχεσιακή Άλγεβρα Γλώσσες Ερωτήσεων != Γλώσσες Προγραμματισμού! Δεν αναμένεται να είναι “Turing complete”. Δεν αναμένεται να χρησιμοποιηθούν για ”δύσκολους υπολογισμούς”. Υποστηρίζουν εύκολη και αποδοτική προσπέλαση σε μεγάλα σύνολα δεδομένων.

53 Βάσεις Δεδομένων Ευαγγελία Πιτουρά53 Μια ερώτηση εφαρμόζεται σε ένα στιγμιότυπο σχέσης και το αποτέλεσμα της ερώτησης είναι πάλι ένα στιγμιότυπο σχέσης Το σχήμα της σχέσης εισόδου είναι ορισμένο Το σχήμα του αποτελέσματος είναι επίσης ορισμένο Σχεσιακή Άλγεβρα (ανακεφαλαίωση)

54 Βάσεις Δεδομένων Ευαγγελία Πιτουρά54 Σχεσιακή Άλγεβρα (ανακεφαλαίωση) Οι πράξεις τις σχεσιακής άλγεβρας: 1. Πράξεις που αφαιρούν κομμάτια από μια σχέση είτε επιλέγοντας γραμμές (σ) είτε προβάλλοντας στήλες (π) 2. Οι συνηθισμένες πράξεις συνόλου: ένωση, τομή, διαφορά 3. Πράξεις που συνδυάζουν πλειάδες από δύο σχέσεις 4. Μετονομασία γνωρισμάτων

55 Βάσεις Δεδομένων Ευαγγελία Πιτουρά55 Σχεσιακή Άλγεβρα (ανακεφαλαίωση) Πλήρες σύνολο πράξεων επιλογή (σ) προβολή (π) διαφορά (-) ένωση (  ) καρτεσιανό γινόμενο (x) Επίσης τομή (  ) συνένωση συνένωση ισότητας φυσική συνένωση (*)

56 Βάσεις Δεδομένων Ευαγγελία Πιτουρά56 Παράδειγμα ΤαινίαΤίτλος Έτος Διάρκεια Είδος Παίζει Όνομα-Ηθοποιού Τίτλος Έτος Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Ηθοποιός

57 Βάσεις Δεδομένων Ευαγγελία Πιτουρά57 Παράδειγμα Όλες τις ταινίες (τίτλο, έτος) με ηθοποιό τη Βουγιουκλάκη Όλες τις ταινίες (τίτλο, έτος) μεταξύ 1956 και 1975 με ηθοποιό τη Βουγιουκλάκη Παράδειγμα

58 Βάσεις Δεδομένων Ευαγγελία Πιτουρά58 Παράδειγμα Μερικά ακόμα απλά παραδείγματα  Τις ταινίες (όλα τα γνωρίσματα) που γυρίστηκαν το 2005  Μόνο τον τίτλο των ταινιών που γυρίστηκαν το 2005  Τους ηθοποιούς (ονόματα) που έπαιξαν σε ταινίες που γυρίστηκαν το 2005  Τους ηθοποιούς (ονόματα) που έπαιξαν σε ταινίες που γυρίστηκαν το 2005, αλλά δεν έπαιξαν σε καμία ταινία που γυρίστηκε το 2004

59 Βάσεις Δεδομένων Ευαγγελία Πιτουρά59 Παράδειγμα Για κάθε ηθοποιό το όνομα του και τον τίτλο-έτος για όλες τις (έγχρωμες) ταινίες στις οποίες παίζει μαζί με τον σύζυγο του/της Παράδειγμα Ονόματα ηθοποιών που δεν έπαιξαν σε καμία ταινία μεταξύ 1995 και 2000

60 Βάσεις Δεδομένων Ευαγγελία Πιτουρά60 Παράδειγμα ΠΡΟΤΙΜΑ(ΠΟΤΗΣ, ΜΠΥΡΑ) ΣΥΧΝΑΖΕΙ(ΠΟΤΗΣ, ΜΑΓΑΖΙ) ΣΕΡΒΙΡΕΙ(ΜΑΓΑΖΙ, ΜΠΥΡΑ) 1.Τους πότες που συχνάζουν σε μαγαζιά που σερβίρουν μπύρα «Guinness» 2.Tα μαγαζιά που σερβίρουν μπύρα «Guinness » ή μπύρα «Leffe Brune» ή και τα δύο 3.Tα μαγαζιά που σερβίρουν μπύρα «Guinness» και μπύρα «Leffe Brune» 4.Tα μαγαζιά που σερβίρουν μόνο μπύρα «Guinness» 5.Μαγαζιά που σερβίρουν τουλάχιστον δύο διαφορετικές μπύρες. (μόνο μία;) 6.Μαγαζιά που σερβίρουν ακριβώς δύο διαφορετικές μπύρες. 7.Τα μαγαζιά που σερβίρουν μπύρες που προτιμά ο πότης «Δημήτρης». 8.Τα μαγαζιά που σερβίρουν όλες τις μπύρες που προτιμά ο «Δημήτρης».

61 Βάσεις Δεδομένων Ευαγγελία Πιτουρά61 Διαίρεση παράδειγμα: βρες τα μαγαζιά που σερβίρουν ΟΛΕΣ τις μπύρες που αρέσουν στο Δημήτρη R (ΣΕΡΒΙΡΕΙ) : Όλα τα μαγαζιά και οι μπύρες που σερβίρουν S : Όλες οι μπύρες που προτιμά ο Δημήτρης Q : Τα μαγαζιά που εμφανίζονται στη σχέση ΣΕΡΒΙΡΕΙ ( R ) με τα υπόλοιπα γνωρίσματα να παίρνουν όλες τις τιμές του S R S

62 Βάσεις Δεδομένων Ευαγγελία Πιτουρά62 Διαίρεση Χρήσιμη όταν για κάθε, παράδειγμα: βρες τον ηθοποιό που παίζει σε όλες (σε κάθε) ταινία που παίζει και ο George Clooney. R (Παίζει) : Όλοι οι ηθοποιοί και οι ταινίες που παίζουν S : Όλες τις ταινίες που παίζει ο George Clooney Q : Οι ηθοποιοί που (το όνομα τους) εμφανίζονται στη σχέση Παίζει ( R ) με υπόλοιπα γνωρίσματα να παίρνουν όλες τις τιμές του S R S

63 Βάσεις Δεδομένων Ευαγγελία Πιτουρά63 Διαίρεση S Bb2b4Bb2b4 R A B a 1 b 1 a 1 b 3 a 1 b 4 a 2 b 2 a 2 b 4 a 3 b 2 Q(Υ)? R(Z) S(X), X  Z Ζ = {Α, Β}Χ = {B} Υ = {A}Υ = Ζ - Χ t  Q,  t R1  R, t R1 [Y] = t  t S  S,  t R  R, t R [X] = t S και t R [Y] = t R S Q Aa2Aa2

64 Βάσεις Δεδομένων Ευαγγελία Πιτουρά64 Διαίρεση R S; RABCa1b1c1a1b1c2a2b2c2a2b1c1a2b2c1a3b1c1a3b1c2RABCa1b1c1a1b1c2a2b2c2a2b1c1a2b2c1a3b1c1a3b1c2 SAa1a2a3SAa1a2a3 Παράδειγμα

65 Βάσεις Δεδομένων Ευαγγελία Πιτουρά65 Διαίρεση R S; RABCa1b1c1a1b1c2a2b2c2a2b2c3a2b2c1a3b1c1a3b1c2RABCa1b1c1a1b1c2a2b2c2a2b2c3a2b2c1a3b1c1a3b1c2 SABa1b1a2b2SABa1b1a2b2 Παράδειγμα

66 Βάσεις Δεδομένων Ευαγγελία Πιτουρά66 Διαίρεση R(Z) S(X), X  Z Το αποτέλεσμα είναι μια καινούργια σχέση Q(Y) όπου Y = Z - X και t  Q(Y) ανν  t R1  R, t R1 [Y] = t και  t S  S,  t R  R, t R [X] = t S, και t R [Y] = t αναλογία με τη διαίρεση ακεραίων διαίρεση ακεραίων: R / S το αποτέλεσμα Q τέτοιο ώστε: Q * S  R διαίρεση σχέσεων: R S το αποτέλεσμα Q τέτοιο ώστε...

67 Βάσεις Δεδομένων Ευαγγελία Πιτουρά67 Παράδειγμα ΤαινίαΤίτλος Έτος Διάρκεια Είδος Παίζει Όνομα-Ηθοποιού Τίτλος Έτος Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Ηθοποιός

68 Βάσεις Δεδομένων Ευαγγελία Πιτουρά68 Διαίρεση S  π τίτλος, έτος (σ Όνομα Ηθοποιού = George Clooney (Παίζει)) Q  Παίζει S Χωρίς να χρησιμοποιήσω την πράξη της διαίρεσης; παράδειγμα: βρες τον ηθοποιό που παίζει σε όλες (σε κάθε) ταινία που παίζει και ο George Clooney. S: Όλες τις ταινίες που παίζει ο George Clooney Q: Οι ηθοποιοί που (το όνομα τους) εμφανίζονται στη σχέση Παίζει (R) με υπόλοιπα γνωρίσματα να παίρνουν όλες τις τιμές του S

69 Βάσεις Δεδομένων Ευαγγελία Πιτουρά69 Διαίρεση Iσοδύναμη έκφραση για το Υπολογισμός των πλειάδων που δεν πρέπει να είναι στο αποτέλεσμα. Q(Υ)  R(Ζ) S(Χ) Μια πλειάδα y αποκλείεται από το αποτέλεσμα αν και μόνον αν: όταν της συνάψουμε μια τιμή x από το S, η πλειάδα δεν ανήκει στο R Τ 1  (π Y (R) x S) - R Q  π Y (R) - π Y (T 1 )

70 Βάσεις Δεδομένων Ευαγγελία Πιτουρά70 Διαίρεση Μια πλειάδα y αποκλείεται από το αποτέλεσμα ανν όταν τις συνάψουμε μια τιμή x από το S, η πλειάδα δεν ανήκει στο R Τ 1  (π Y (R) x S) - R Q  π Y (R) - π Y (T 1 ) Παράδειγμα (εφαρμογή ισοδύναμης έκφρασης): βρες τον ηθοποιό που παίζει σε όλες (σε κάθε) ταινία που παίζει και o George Clooney. S  π τίτλος, έτος (σ Όνομα Ηθοποιού = George Clooney (Παίζει)) Τ 1  (π ηθοποιός (Παίζει) x S) – Παίζει (μένουν μόνο οι ηθοποιοί που δεν παίζουν σε κάποια ταινία που παίζει o Clooney!) Q  π ηθοποιός (Παίζει) – π ηθοποιός (Τ 1 )

71 Βάσεις Δεδομένων Ευαγγελία Πιτουρά71 Αναδρομική Κλειστότητα Αρ_Ταυτ Διεύθυνση Μισθός Προϊστάμενος Δεν είναι δυνατόν να βρούμε όλους τους υφισταμένους που επιτηρεί σε οποιοδήποτε επίπεδο ένας συγκεκριμένος προϊστάμενος (π.χ., Αρ_Ταυτ = Μ20200) R Π 1 (Προϊστ1)  π Αρ_Ταυτ (σ Προϊστάμενος = Μ20200 (R)) Π 2 (Προϊστ2)  π Αρ_Ταυτ ( Π 1 Προϊστ1 = Προϊστάμενος (R)) Παρόμοια, μπορώ να βρω πχ τους συμπρωταγωνιστές του George Clooney (ηθοποιούς που έπαιξαν σε τουλάχιστον μια ταινία μαζί του), τους συμπρωταγωνιστές των συμπρωταγωνιστών του κλπ άλλα μέχρι ένα βάθος

72 Βάσεις Δεδομένων Ευαγγελία Πιτουρά72 Εξωτερική Συνένωση Όταν θέλουμε να κρατήσουμε στο αποτέλεσμα όλες τις πλειάδες - και αυτές που δεν ταιριάζουν) είτε της σχέσης στα αριστερά (αριστερή εξωτερική συνένωση) είτε της σχέσης στα δεξιά (δεξιά εξωτερική συνένωση) R S Α C Α B Α C B Α C B null Α C B null 9 R * S


Κατέβασμα ppt "Βάσεις Δεδομένων 2009-2010Ευαγγελία Πιτουρά1 Σχεσιακή Άλγεβρα."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google