Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Αλληλεπίδραση ακτινοβολίας laser με πολυμερή Φοιτητής : Αποστολόπουλος Άγγελος Υπ. Καθηγήτρια : Μ. Μακροπούλου.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Αλληλεπίδραση ακτινοβολίας laser με πολυμερή Φοιτητής : Αποστολόπουλος Άγγελος Υπ. Καθηγήτρια : Μ. Μακροπούλου."— Μεταγράφημα παρουσίασης:

1 Αλληλεπίδραση ακτινοβολίας laser με πολυμερή Φοιτητής : Αποστολόπουλος Άγγελος Υπ. Καθηγήτρια : Μ. Μακροπούλου

2 Περιεχόμενα Εισαγωγή Παράμετροι της αποδόμησης πολυμερών με laser Μηχανισμοί αποδόμησης Υπερβραχείς παλμοί Εφαρμογές

3 ανακάλυψη πρώτου laser από Τ. Η. Mainman το 1960 διάτρηση κόψιμο συγκόλληση μετάλλων Εισαγωγή ιδιότητες ακτινοβολίας laser: 1) μονοχρωματικότητα 2) κατευθυντικότητα 3) χωρική και χρονική συμφωνία 4) λαμπρότητα πρώτες πρακτικές εφαρμογές : φυσικό φως δέσμη laser

4 αρχικά οι τεχνικές αποδόμησης με laser ήταν ελάχιστα πιο αποδοτικές από τις συμβατικές εξέλιξη και ωρίμανση τις δεκαετίες ‘70 και ‘80 Το laser είναι ένα ισχυρό εργαλείο, με το οποίο μπορούν να σχηματιστούν τρισδιάστατες δομές σε κάθε σχεδόν υλικό. “Laser ABLATION” aποδόμηση υλικού μέσω της ακτινοβόλησής του από ισχυρή δέσμη laser Εισαγωγή σήμερα βρίσκουν ευρεία χρήση στη βιομηχανία, καθώς υπερτερούν των συμβατικών εργαλείων

5 υπεριώδης παλμική ακτινοβολία laser (ArF-193nm) προσπίπτει στην επιφάνεια ενός οργανικού πολυμερούς απομάκρυνση από την επιφάνεια υλικού πάχους 0.01–0.1 μ m προοριζόταν για εναλλακτική της φωτολιθογραφίας Εισαγωγή χαρακτηριστικό διάγραμμα διαπερατότητας πολυμερούς δημοσίευση από R. Srinivasan et al. πάνω στο φαινόμενο της φωτοαποδόμησης πολυμερών 1982: τρύπες 300 μ m σε φίλμ πολυαμιδίου πάχους 75 μ m

6 Μήκη κύματος εμπορικά διαθέσιμων πηγών laser Εισαγωγή

7 Πυκνότητα ενέργειας (fluence): Πυκνότητα ενέργειας κατωφλίου : F th Η ελάχιστη απαιτούμενη πυκνότητα ενέργειας για την οποία παρατηρείται αποδόμηση Ενεργός συντελεστής απορρόφησης : α eff μήκος κύματος πυκνότητα ενέργειας τους μηχανισμούς που λαμβάνουν χώρα κατά την αποδόμηση εξαρτάται από : Παράμετροι της αποδόμησης πολυμερών με laser μήκος κύματος διάρκεια παλμού σύνθεση υλικού Περιγράφει το βάθος διείσδυσης της δέσμης εξαρτάται από :

8 1) Βάθος κρατήρα ύστερα από ένα παλμό 2) Κλίση της ευθείας της γραφικής παράστασης του βάθους αποδόμησης ως προς αριθμό παλμών η αποδόμηση δεν ξεκινάει απαραίτητα από τον πρώτο παλμό Φαινόμενο « επώασης » (“Incubation” effect) αύξηση ρυθμού αποδόμησης Παράμετροι της αποδόμησης πολυμερών με laser: ρυθμός αποδόμησης d(F) Ρυθμός αποδόμησης : d(F) πάχος του υλικού που αφαιρείται ανά παλμό του laser αρχικοί παλμοί μεταβολή οπτικών ιδιοτήτων αύξηση της απορροφητικότητας

9 οπτική προφιλομετρίαπροφιλομετρία ακίδας AFM (Atomic force microscopy) Quartz Crystal Microbalance (QCM) Μέθοδοι μέτρησης βάθους αποδομημένης περιοχής

10  Μέση πυκνότητα ενέργειας :  αύξηση της κλίσης λόγο αποδοτικότερης αποδόμησης  Υψηλή πυκνότητα ενέργειας :  εξασθένηση της δέσμης λόγω απορρόφησης από το “plume” ( το σύννεφο των πτητικών προϊόντων της αποδόμησης και του παραγόμενου πλάσματος ) Παράμετροι της αποδόμησης πολυμερών με laser: ρυθμός αποδόμησης d(F) Η διαδικασία της αποδόμησης των περισσοτέρων πολυμερών περιγράφεται σε μια πρώτη προσέγγιση από την εμπειρική σχέση  Χαμηλή πυκνότητα ενέργειας :  άμεσος προσδιορισμός F th  φαινόμενα επώασης

11 Φωτοθερμικός Φωτοχημικός Φωτομηχανικός Παρά τα 30 χρόνια έρευνας στον τομέα της αποδόμησης των πολυμερών, δεν έχει ξεκαθαρίσει πλήρως οι συνεισφορά του κάθε μηχανισμού, ιδιαίτερα σε μεγάλες πυκνότητες ενέργειας. Οι τρεις κυριότεροι μηχανισμοί φωτοαποδόμησης είναι : Μηχανισμοί αποδόμησης

12 ενέργεια φωτονίου > ενέργεια χημικών δεσμών πολυμερούς Θραύση κύριων και δευτερευουσών αλυσίδων Αποκοπή ομάδων ατόμων ( πολυμερικές αλυσίδες μικρότερου μοριακού βάρους, μονομερή ) Ενέργεια φωτονίων « καταναλώνεται » στο σπάσιμο δεσμών Περιορισμένη παραγωγή και διάχυση θερμότητας Υπεριώδης ακτινοβολία Μηχανισμοί αποδόμησης : φωτοχημικός μηχανισμός

13 αποδόμηση λόγω τήξης και εξάτμισης Η απορρόφηση της εισερχόμενης ακτινοβολίας προκαλεί δονητικές και περιστροφικές διεγέρσεις απότομη αύξηση της θερμοκρασίας αύξηση κινητικής ενέργειας συστήματος Κατά την ακτινοβόληση με υψηλή πυκνότητα ενέργειας, οι έντονες ταλαντώσεις του πλέγματος είναι ικανές να προκαλέσουν θραύση τόσο των ισχυρών δεσμών κατά μήκος των μακρομορίων, όσο και των ασθενέστερων που τα συνδέουν μεταξύ τους. Αυτό έχει σαν αποτέλεσμα μια κατακερματισμένη δομή με μικρότερου μεγέθους μόρια και χαμηλότερο σημείο εξάτμισης σε σχέση με την αρχική. εξάτμιση χωρίς τήξη Μηχανισμοί αποδόμησης : φωτοθερμικός μηχανισμός

14 Χάραξη καναλιών σε PVA (Polyvinyl alcohol) λ =193 nmXeCl: λ =308 nm Ε =4.02 eV Ε =6.43 eV Στα 193nm η ενέργεια των φωτονίων είναι μεγαλύτερη των περισσότερων δεσμών Κυριαρχία φωτοχημικού φαινομένου ArF: Μηχανισμοί αποδόμησης : Σύγκριση φωτοχημικού και φωτοθερμικού μηχανισμού

15 266 nm 193nm PVA 193 nm 308 nm PS (Polystyrene) Μηχανισμοί αποδόμησης : Σύγκριση φωτοχημικού και φωτοθερμικού μηχανισμού

16 κατά τον πολυμερισμό φωτοχημικές και φωτοθερμικές διεγέρσεις προϊόντα μικρότερου μοριακού βάρους διαστολή του όγκου αποπολυμερισμός του PMMA ≈ 20% αύξηση του όγκου σχηματισμός αέριων προϊόντων φωτοαποδόμησης στο υπόστρωμα αύξηση της εσωτερικής πίεσης διάσπαση λόγω της ανάπτυξης μηχανικών τάσεων Μηχανισμοί αποδόμησης : φωτομηχανικός μηχανισμός κατά την ακτινοβόληση με laser συστολή του όγκου παράδειγμα :

17 ακτινοβόληση ( τ ≤ns) θέρμανση υπό συνθήκη σταθερού όγκου αύξηση της πίεσηςδημιουργία θερμοελαστικών κυμάτων κατά τον άξονα της δέσμης & αντίθετη μεταξύ τους διάδοση πολύ υψηλός ρυθμός θέρμανσης θλιπτικές τάσεις ανάκλαση στην επιφάνεια & αντιστροφή του πλάτους εφελκυστικές τάσεις Όταν σ *≥ τάσης αντοχής υλικούεκτίναξη υλικού λόγω θραύσης Μηχανισμοί αποδόμησης : φωτομηχανικός μηχανισμός δημιουργία θερμοελαστικών κυμάτων ταυτόχρονα όμως

18 Πολυφωτονική απορρόφηση επεξεργασία του υλικού ακόμα και σε μήκη κύματος που αυτό είναι διαφανές ανάπτυξη “plume” ακολουθεί τουλάχιστον ένα ps μετά την ακτινοβόληση του laser με αποτέλεσμα τη μη απορρόφηση της δέσμης ο χρόνος αλληλεπίδρασης της ακτινοβολίας (~10 -15 -10 -13 s) είναι μικρότερος του χρόνου διάδοσης της ενέργειας στο πλέγμα (~10 -11 s). Συνεπώς περιορίζεται η διάχυση θερμότητας και ελαχιστοποιείται η θερμική καταστροφή Πλεονεκτήματα : Υπερβραχείς παλμοί υπερβραχείς παλμοί laser ( τ ≤ ps) έχουν εξαιρετικά υψηλή πυκνότητα ισχύος, με αποτέλεσμα να κυριαρχούν φαινόμενα μη γραμμικής απορρόφησης, λόγω της υψηλής πυκνότητας φωτονίων

19 Cyclic olefin copolymer (COP) Υπερβραχείς παλμοί F=44.2 J/cm 2 λ =800nm (Ti:Sapphire) τ = 40 fs Polymethylmethacrylate (PMMA) F=44.2 J/cm 2 λ =800nm (Ti:Sapphire) τ = 40 fs

20 Εφαρμογές

21 πυκνότητα ενέργειας ≈ 200 mJ/cm 2 για λ =308nm Τυπική διάταξη excimer laser για αποδόμηση με χρήση μάσκας Εφαρμογές : Μικροηλεκτρονική διάτρηση των στρωμάτων του πολυιμιδίου (polyimide) σε πολυεπίπεδες πολυμερικές πλακέτες κυκλωμάτων

22 ακροφύσια κατασκευασμένα από excimer laser με τη βοήθεια της προβολής μάσκας σε πολυιμίδιο Εφαρμογές : Διάτρηση ακροφυσίων ink-jet εκτυπωτών p.90 πάχος πολυιμιδίου ≈50 μ m 200-300 παλμοί με F=600mJ/cm 2 διάμετρος ακροφυσίου : 28±0,5 μ m για 600dpi εκτυπωτή ≈300 τρύπες

23 εγχάραξη μικροκαναλιών σε πολυμερή για χρήση σε «lab-on-chip» εξαρτήματα Εφαρμογές : Μικρορευστονική δεξαμενή d=0.5mm φίλτρο 15 μ m κανάλι παροχής πολυανθρακικό λ =248nm F=4J/cm 2

24 κατασκευή μικροφακών Εφαρμογές : Οπτοηλεκτρονική φακοί Fresnel σε πολυμερές τριαζύνης βάση σύζευξης οπτικών ινών (d=125 μ m) KrF: F=180 mJ/cm 2 σε πολυανθρακικό

25

26 Βιβλιογραφία Kris Naessens, "Excimer laser ablation ablation of microstructures in polymers for photonic applications" Marc Robert Hauer, "Laser ablation of polymers studied by time resolved methods" P.E. Dyer, "Excimer laser polymer ablation: twenty years on" Raffaella Surianoa, ∗, Arseniy Kuznetsovb, Shane M. Eatonc, Roman Kiyanb, Giulio Cerullod, Roberto Osellamec, Boris N. Chichkovb, Marinella Levia, Stefano Turria, "Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels" S. Chen*, V. V. Kancharla and Y. Lu, "Laser-based microscale patterning of biodegradable polymers for biomedical applications" Thomas Lippert, "UV Laser Ablation of Polymers:From Structuring to Thin Film Deposition" W. M. Steen, J.Mazumder," Laser Material Processing” K. Zimmer, A. Braun, “Excimer laser machining for 3D-surface structuring” Guenther Paltauf, Peter E. Dyer, "Photomechanical Processes and Effects in Ablation" N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for Laser Ablation of Polymers” A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulou, A.K. Kar, "Picosecond and subpicosecond visible laser ablation of optically transparent polymers”


Κατέβασμα ppt "Αλληλεπίδραση ακτινοβολίας laser με πολυμερή Φοιτητής : Αποστολόπουλος Άγγελος Υπ. Καθηγήτρια : Μ. Μακροπούλου."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google