Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

1 Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π.Δ.407/80 Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Εισαγωγή - Βασικό.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "1 Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π.Δ.407/80 Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Εισαγωγή - Βασικό."— Μεταγράφημα παρουσίασης:

1 1 Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π.Δ.407/80 Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Εισαγωγή - Βασικό Θεωρητικό Υπόβαθρο ΔΤΨΣ 150 – Ψηφιακή Επεξεργασία Εικόνας

2 2 1. Εισαγωγή 2. Τύποι Εικόνων 3. Γεωμετρία Απεικόνισης 4. Όργανα Απεικόνισης 5. Καταγραφή Εικόνας 6. Αναπαράσταση Εικόνας Περιεχόμενα

3 3 Σκοπός Του Μαθήματος (1/2)  Να μεταφέρει τις βασικές ιδέες της Ψηφιακής Επεξεργασίας Εικόνας (ΨΕΕ) από μια λειτουργική όψη με κάποια επαφή στην θεωρία Οι βασικές αυτές ιδέες είναι:  Ανάληψη: κάμερες, διασύνδεση, και υπολογιστές. - Επεξεργασία, αλγόριθμοι και θεωρία. - Πρακτικές εφαρμογές της ΨΕΕ. - Βασικοί αλγόριθμοι ανάλυσης εικόνας.  Κάνει προσιτή την ψηφιακή επεξεργασία εικόνας.  Παρουσιάζει το αντικείμενο με λογική μαθηματική ευκολία.  Παρουσιάζει τα αποτελέσματα πολλαπλών παραδειγμάτων οπτικών εικόνων στην μορφή της ακριβούς ΨΕΕ, όπως αυτά έχουν αναλυθεί στο Laboratory for Vision Systems στο University of Texas at Austin, και στο Τμήμα Πληροφορικής του Πανεπιστημίου Κύπρου.  Εισαγωγή  Τύποι Εικόνων  Γεωμετρία Απεικόνισης  Όργανα Απεικόνισης  Καταγραφή Εικόνας  Αναπαράσταση Εικόνας

4 4 • Να γίνονται ερωτήσεις όσον αφορά το αντικείμενο του μαθήματος • Να μη διστάζουν οι φοιτητές να δείξουν τη μη κατανόηση κάποιου θέματος • Να γίνονται σχόλια για την ταχύτητα διδαχής του μαθήματος • Να γίνονται σχόλια για το επίπεδο διδαχής Σκοπός Του Μαθήματος (2/2)

5 5 Σχόλια Για Το Βιβλίο Το βιβλίο που καλύπτει την ύλη του μαθήματος είναι το: Digital Image Processing, R.C. Gonzalez and R.E. WoodsDigital Image Processing, R.C. Gonzalez and R.E. Woods  Πολύ ευπρόσιτο βιβλίο – Φιλικό προς το χρήστη  Πολύ καλά εικονογραφημένο - με χρήσιμα παραδείγματα εφαρμογών  Οι σημειώσεις της τάξης είναι αυτόνομες. Εντούτοις, το βιβλίο είναι καλό για διάβασμα.

6 6 Άλλα Προτεινόμενα Βιβλία • Digital Image Processing, W.K. Pratt, Wiley, 1992, Encyclopedic, somewhat dated. There is a new edition. • Digital Picture Processing, Rosenfeld & Kak, Academic 1982, Encyclopedic but readable • Fundamentals of Digital Image Processing, Jain, Prentice 1989, Handbook-style, meant for advanced level. • Machine Vision, Jain, Kasturi, and Schunk, McGraw-Hill, 1995, Beginner ’ s book on computer vision. • Robot Vision, B.K.P. Horn, MIT Press, 1986, Advanced-level book on computer vision • Digital Video Processing, M. Tekalp, Prentice-Hall, 1995, Only book devoted to digital video; high-level; excellent.

7 7 Δημοσιεύσεις - Journals · IEEE Transactions on: - Image Processing - Pattern Analysis and Machine Intelligence - Medical Imaging - Remote Sensing · Computer Vision, Graphics, and Image Processing - Image Understanding - Graphics and Image Processing · Pattern Recognition · Journal of Visual Communication and Image Representation · Image and Vision Computing

8 8 Εφαρμογές της ΨΕΕ (1/2)  Υπάρχουν αμέτρητες περιοχές εφαρμογών της ΨΨΕ, οι οποίες εξελίσσσονται ραγδαία. Θα δώσουμε πιο κάτω μερικές από αυτές.

9 9 Που χρησιμοποιείται? (2/2) ΨΨΕ – Μια επιστήμη με πολλές εφαρμογές:

10 10 Εξέλιξη της ΨΨΕ  Είναι σημαντική στις περιοχές με στοιχεία πολλών διαστάσεων  Η απεικόνιση είναι ανεκτίμητο μέσο και μετάφραση δεδομένων  Η όραση είναι η πιο σημαντική αίσθηση μας και είναι πανταχού παρών  Εφαρμογές σε σταθμούς εργασίας και προσωπικούς υπολογιστές  Σημαντική πρόοδος σε αλγορίθμους και επιπρόσθετα στοιχεία του υλικού των υπολογιστών Πλεονεκτήματα της ΨΨΕ σε σταθμούς εργασίας  Χειρισμός – κόστος των προσωπικών σταθμών εργασίας είναι ιδανικό για εργαστηριακή δουλειά  Τεράστια ικανότητα μείωσης χρόνου  Μπορεί να επιβλέπει και να ελέγχει πολλαπλές διεργασίες  Ικανότητα εντολών των σταθμών εργασίας για την καλπάζουσα ΨΕΕ

11 11 Τι Είναι οι Ψηφιακές Εικόνες?  Υπάρχουν τόσων ειδών εικόνες όσοι και οι τύποι της ακτινοβολίας και οι τρόποι που δείχνουν πώς η ακτινοβολία αντιδρά με τα αντικείμενα.

12 12 Γενικοί τύποι εικόνων (1/2)  Μπορούμε να διακρίνουμε τρεις τύπους εικόνας, οι οποίοι δημιουργούν διαφορετικούς τύπους πληροφορίας εικόνας.  Απεικόνιση Αντανάκλασης: Η πληροφορία της εικόνας είναι η πληροφορία της επιφάνειας, δηλαδή πως ένα αντικείμενο αντανακλά/απορροφά ακτινοβολία - Οπτική (ορατή, φωτογραφική, με βάση ακτίνων laser) - Radar - Sonar, ultrasound (non-EM) Υπέρηχοιultrasound - Electron microscopy Ηλεκτρονικό ΜικροσκόπιοElectron microscopy

13 13 Γενικοί τύποι εικόνων (2/2)  Απεικόνιση εκπομπής: Η πληροφορία εικόνας είναι εσωτερική πληροφορία, δηλαδή πως ένα αντικείμενο δημιουργεί ακτινοβολία. - Θερμική, υπέρυθρη (γεωφυσική, ιατρική, στρατιωτική) - Αστρονομία (άστρα, γαλαξίες, κλπ.) - Πυρηνική (εκπομπή σωματιδίων  Απεικόνιση Απορρόφησης: Η πληροφορία της εικόνας είναι εσωτερική πληροφορία, δηλαδή πως ένα αντικείμενο αλλάζει / απορροφά ακτινοβολία που περνά διαμέσου του. - Ακτίνες Χ σε πολλές χρήσεις - Οπτική μικροσκοπία σε χρήσεις εργαστηρίου - Τομογραφία στην ιατρική - “ Vibro-Seis ” στην γεωφυσική έρευνα

14 14 Ηλεκτρομαγνητική Ακτινοβολία (1/2)  Το ηλεκτρομαγνητικό φάσμα καλύπτει πολλές χρήσιμες ακτινοβολίες που χρησιμοποιούνται στην απεικόνιση:

15 15 Ηλεκτρομαγνητική Ακτινοβολία (2/2)  Μερικοί κλάδοι της επιστήμης, π.χ. αστρονομία, περιέχουν εικόνες απο όλο το φάσμα.  Συνήθως θα χρησιμοποιήσουμε παραδείγματα εικόνων από το ορατό φάσμα.  Αυτό είναι ένα πολύ μικρό κομμάτι του φάσματος ακτινοβολίας!

16 16 Κλίμακες Απεικόνισης  Μεταβάλλονται ανάλογα με τις κλίμακες που υπάρχουν στην φύση:

17 17 Διαστάσεις Εικόνων  Οι εικόνες είναι πολύ-διαστατά σήματα (  2 διαστάσεις)  Ο αριθμός των διαστάσεων μιας εικόνας είναι ο αριθμός των συντεταγμένων που χρειάζονται για ένα σημείο

18 18 Γεωμετρία οπτικής εικονοληψίας (1/2) Απλοποιημένη γεωμετρία φωτογραφικής απεικόνισης

19 19 Γεωμετρία Οπτικής Απεικόνισης (2/2)  ΟΠΤΙΚΗ ΑΠΕΙΚΟΝΙΣΗ 3-Δ ΣΕ 2-Δ Η απεικόνιση περιλαμβάνει μείωση διαστάσεων, έτσι κάποια 3-Δ πληροφορία χάνεται.

20 20 Σκηνογραφική προβολή Προβολή: είναι η μείωση των διαστάσεων Σκηνογραφική προβολή: είναι η μείωση διαστάσεων από 3-Δ σε 2-Δ Συστήματα συντεταγμένων:  Συντεταγμένες πραγματικού χώρου (Χ,Υ,Ζ) : δηλώνουν σημεία στο 3-Δ χώρο Το σημείο αναφοράς (Χ,Υ,Ζ)=(0,0,0) χρησιμοποιείται σαν το κέντρο του φακού  Συντεταγμένες εικόνας (x,y) : δηλώνουν σημεία σε 2-Δ εικόνα Το πεδίο x - y είναι παράλληλο του πεδίου Χ – Υ Ο οπτικός άξονας περνά και από τα δυο σημεία αναφοράς

21 21 Γεωμετρία προβολής οπής Ο φακός θεωρείται σαν μια οπή από την οποία περνούν όλες οι ακτίνες φωτός που κτυπούν το πεδίο εικόνας. Πρόβλημα: σε αυτό το μοντέλο, αλλά και στην πραγματικότητα η εικόνα είναι αντιστραμμένη. Έτσι, αλλάζουμε το μοντέλο.

22 22 Γεωμετρία αντεστραμμένης προβολής (1/3) Παρατήρηση: το διάγραμμα δεν είναι σε κλίμακα.

23 23 Γεωμετρία αντεστραμμένης προβολής (2/3)  Το πιο πάνω διάγραμμα δείχνει όλους τους άξονες συντεταγμένων

24 24 Γεωμετρία αντεστραμμένης προβολής (3/3) Το ισοδύναμο απλουστευμένο διάγραμμα περιέχει μόνο τα στοιχεία που σχετίζουν το (Χ,Υ,Ζ) = (A,B,C) με την προβολή (x,y) = (a,b).

25 25 Όμοια Τρίγωνα Δυο τρίγωνα είναι όμοια όταν οι αντίστοιχες γωνίες τους είναι ίσες Θεώρημα: τα όμοια τρίγωνα έχουν τις αντίστοιχες πλευρές τους ανάλογες D = d, E = e, F = f E e F f D d

26 26 Λύση σκηνογραφικής προβολής (1/2) • Χρησιμοποιώντας όμοια τρίγωνα μπορούμε να βρούμε τη σχέση μεταξύ 3-Δ συντεταγμένων χώρου και 2-Δ συντεταγμένων εικόνας • Ξανασχεδιάζουμε τη γεωμετρική εικόνα φανερώνοντας δυο ζεύγη από όμοια τρίγωνα

27 27 Λύση σκηνογραφικής προβολής (2/2) Από το θεώρημα των ομοίων τριγώνων συμπεραίνουμε: και ή (a,b) = f. (A,B) = (fA/C, fB/C) C

28 28 Εξίσωση Σκηνογραφικής Προβολής Έτσι, έχουμε την ακόλουθη σχέση: ( x,y) = f. (X,Y) Z όπου f = εστιακή απόσταση Η αναλογία f είναι ο συντελεστής μεγέθυνσης, ο οποίος μεταβάλλεται Ζ με την απόσταση Ζ από το κέντρο του φακού μέχρι το πεδίο του αντικειμένου

29 29 Παράδειγμα 1 Υπάρχει ένας άνθρωπος σε απόσταση 10 μέτρων μπροστά μας. Έχει 2 μέτρα ύψος. Η εστιακή απόσταση του ματιού μας είναι 17mm. Ερώτηση: ποιο είναι το ύψος Η της εικόνας που σχηματίζεται στη ρέτινα; Από τα όμοια τρίγωνα: 2 m = H 10 m 17mm H = 3.4 mm

30 30 Παράδειγμα 2 (1/3) Γιατί οι ευθείες (ή τμήματα ευθειών) σε 3-Δ χώρο προβάλλονται σε ευθεία γραμμή στη 2-Δ εικόνα;

31 31 Παράδειγμα 2 (2/3) Παρατηρούμε ότι όλες οι γραμμές που περνούν από το κέντρο του φακού (σημείο αναφοράς) και την 3-Δ ευθεία πρέπει να είναι στο ίδιο επίπεδο (ένα σημείο και μια ευθεία προσδιορίζουν ένα επίπεδο). Η διασταύρωση αυτού του επιπέδου με το επίπεδο της εικόνας δίνει την προέκταση της ευθείας. Η διασταύρωση δυο οποιονδήποτε μη παράλληλων επιπέδων είναι μια ευθεία.

32 32 Παράδειγμα 2 (3/3) Έτσι, η προβολή μιας 3-Δ ευθείας είναι σε μια 2-Δ ευθεία.

33 33 Ψηφιοποίηση Εικόνας  Τι είναι;  Η μετατροπή μιας δυσδιάστατης φυσικής εικόνας (στην ουσία μιας κατανομής φωτεινοτήτων) σε ηλεκτρικό σήμα και έπειτα σε ψηφιακή πληροφορία  Αισθητήρες CCD (Charged Couple Devices)  Μετατρέπουν την φωτεινότητα σε ηλεκτρικό φορτίο  Οι πλείστες κάμερες αυτούς χρησιμοποιούν

34 34 Αισθητήρες Charged Couple Device (1/3)  Τα στοιχεία του CCD πίνακα φορτίζονται ανάλογα με την φωτεινότητα η οποία προσπίπτει επάνω τους  Κάθε παλμός του Vertical Scan Generator αναγκάζει τα φορτία από κάθε γραμμή του πίνακα να μετακινηθούν σε ένα Shift Register  Ο Shift Register μεταφέρει τα φορτία σε ένα ενισχυτή, γραμμή προς γραμμή. Για το παραπάνω παράδειγμα, ο Shift Register θα μεταφέρει στον ενισχυτή τα φορτία της πρώτης γραμμής, έπειτα της δεύτερης, της τρίτης κ.ο.κ

35 35 Αισθητήρες Charged Couple Devices (2/3) Κάθε CCD συσκευή διαθέτει τρεις « πηγές δυναμικού » (potential wells). Η μεσαία παράγει φορτίο (ροή ηλεκτρονίων) ανάλογα με το πλήθος των φωτονίων (δηλαδή την ένταση του φωτός) τα οποία προσπίπτουν επάνω της Έπειτα το φορτίο της μεσαίας πηγής μεταπηδά στις άλλες δύο. Τέλος καταλήγει στον Shift Register από όπου θα οδηγηθεί στον ενισχυτή

36 36 Αισθητήρες Charged Couple Devices (3/3) Με τον ίδιο τρόπο, το φορτίο του Shift Register μεταβιβάζεται στον ενισχυτή, ο οποίος παράγει ηλεκτρικό ρεύμα ανάλογο με την τάση του αριθμού ηλεκτρονίων που λαμβάνει:  Η έξοδος του ενισχυτή είναι μια γραμμή – προς – γραμμή αναλογική κυματομορφή η οποία συνήθως έχει προκαθορισμένη μορφή (NTSC: 525 γραμμές/πλαίσιο, 30 πλαίσια/sec, RS-170).  Τα τηλεοπτικά σήματα συνήθως ακολουθούν την NTSC  Οι ψηφιακές εικόνες που δημιουργούνται από εργαστηριακές κάμερες και κάμερες ασφαλείας είναι συνήθως της μορφής RS-170  Για να μπορεί να τύχει επεξεργασίας από υπολογιστή, η αναλογική εικόνα πρέπει να μετατραπεί σε ψηφιακό σήμα από μια συσκευή ADC – Analog to Digital Converter

37 37 Μετατροπέας Αναλογικού σε Ψηφιακού (Analog to Digital Converter – ADC)  Διεξάγει Δειγματοληψία και Κβαντοποίηση για να μετατρέψει μια συνεχής κυματομορφή τάσης σε διακριτές τιμές  σημαντική η Συχνότητα Δειγματοληψίας και το Διάστημα Κβαντοποίησης  Οι κάρτες ψηφιοποίησης βίντεο (video digitizer board) συνήθως μπορούν να ενωθούν με την βιντεοκάμερα  Οι νέες « εντελώς ψηφιακές » κάμερες περιλαμβάνουν ενσωματωμένο ADC

38 38 Εικόνα Από Δειγματοληψία (1/4)  Τα αποτελέσματα τα οποία προκύπτουν από τη δειγματοληψία αποθηκεύονται ως πίνακες από τιμές. Κάθε τιμή αντιπροσωπεύει τη φωτεινότητα της εικόνας στο συγκεκριμένο σημείο. Δίπλα απεικονίζεται ένας 10x10 πίνακας εικόνας  Κάθε ένα από τα κελιά του πίνακα ονομάζεται εικονοστοιχείο – (“pixel” από τις λέξεις «picture element»)  Στην ΨΕΕ συνήθως χρησιμοποιούμε τετραγωνικούς πίνακες NxN με διαστάσεις δύναμη του 2 (N=2 M ) - είναι πιο εύκολοι στον χειρισμό και μερικοί αλγόριθμοι είναι αποδοτικότεροι για τέτοιες διαστάσεις M=72 7 x 2 7 = 128 x 128σύνολο: 2 14 =16384pixels M=102 10 x 2 10 = 1024 x 1024σύνολο: 2 20 =1048576 pixels

39 39 Εικόνα Από Δειγματοληψία (2/4)  Η δειγματοληψία πρέπει να είναι επαρκώς πυκνή αλλιώς: μεγάλη απώλεια πληροφορίας  μεγάλη αλλοίωση της εικόνας  Παρακάτω απεικονίζονται οι προκύπτουσες ψηφιακές εικόνες με δειγματοληψία σε τρεις διαφορετικές συχνότητες – 600, 200 και 75 DPI)  Ποιά είναι κατάλληλη συχνότητα δειγματοληψίας;  Θεώρημα Δειγματοληψίας του Nyquist (Nyquist Sampling Theorem)  Παρόμοια, το διάστημα κβαντοποίησης πρέπει να είναι αρκετά μικρό 600 DPI200 DPI75 DPI

40 40 Εικόνα Από Δειγματοληψία (3/4)  Κβαντοποίηση: η φωτεινότητα κάθε pixel παίρνει μια τιμή από ένα πεπερασμένο σύνολο K αριθμών (συνήθως ακεραίων, από 0 έως K-1)  Τυπικά, το πλήθος επιπέδων φωτεινότητας είναι δύναμη του 2: K=2 Β  Άρα με B bits μπορούμε να κρατάμε την φωτεινότητά σε κάθε pixel Στις εικόνες τόνων γκρίζου συνήθως B=8, άρα έχουμε 256 πιθανά επίπεδα φωτεινότητας (τιμές 0 έως 255) με 8 bit ανά pixel  Όπως και με την συχνότητα δειγματοληψίας, οι τιμές φωτεινότητας της εικόνας θα πρέπει να κβαντοποιηθούν επαρκώς πυκνά (μικρό διάστημα κβαντοποίησης) ώστε να μην χαθεί σημαντική πληροφορία φωτεινότητας 8-Bit Κβαντοποίηση 5-Bit Κβαντοποίηση3-Bit Κβαντοποίηση

41 41 Εικόνα Από Δειγματοληψία (4/4)  Αναπαράσταση εικόνας ως σύνολο επιπέδων bits = • • • • • • • •

42 42 Η Επανάσταση Της Ψηφιακής Εικόνας (1/4)  Χώρος που απαιτείται για αποθήκευση ψηφιακής εικόνας:  Ανάλυση εικόνας H x W pixels (Height, Width)  B bits για αποθήκευση της φωτεινότητας σε κάθε pixel  Χώρος = H x W x B (σε bits)  Για εικόνες τόνων γκρίζου, συνήθως:  Οι διαστάσεις είναι H = W = 2 M, Μ = 9 (512 x 512 pixels)  B = 8 (256 επίπεδα φωτεινότητας γκρίζου)  Χώρος = B x 2 M x 2 M = 8 x 2 18 = 2097152 bits = 0.4 Mbytes  Για βίντεο, συνήθως έχουμε 30 πλαίσια (καρέ εικόνας) να μεταδίδονται ανά δευτερόλεπτο. Χρησιμοποιώντας μια τεχνική για μείωση των αναγκών σε bandwidth (Πεπλεγμένη Σάρωση 2:1 - Interlaced Scanning 2:1), μια κινούμενη γκρι εικόνα με τις παραπάνω διαστάσεις και επίπεδα φωτεινότητας απαιτεί περίπου 7.5 Mbytes για 1 δευτερόλεπτο βίντεο  Για μια έγχρωμη ταινία 2 ωρών χρειάζονται περίπου 27000 Mbytes. Η ποσότητα αυτή είναι υπερβολική. Για αυτό χρειάζονται τεχνικές μείωσης των αναγκών σε αποθηκευτικό χώρο και bandwidth  Συμπίεση (θα τη δούμε σε άλλα κεφάλαια)

43 43 Η Επανάσταση Της Ψηφιακής Εικόνας (2/4)  Τα συστήματα ΨΕΕ κατά κανόνα χρησιμοποιούν Καρτεσιανή (ορθογώνια) δειγματοληψία. Δηλαδή οι εικόνες αναπαριστούνται ως πίνακες με σειρές και στήλες. Τα pixels δεικτοδοτούνται με βάση τον αριθμό στήλης και γραμμής όπου βρίσκονται  Γιατί; Για απλοποίηση των αλγορίθμων  Εντούτοις, η « δειγματοληψία » στον αμφιβληστροειδή χιτώνα του ανθρώπινου ματιού προσεγγίζεται περισσότερο από εξαγωνική δειγματοληψία, όπου τα pixels είναι πιο συμπαγή μεταξύ τους  Εξαγωνικές εικόνες μπορούν επίσης να αναπαρασταθούν ως πίνακες με σειρές και στήλες, αλλά οι άξονες δεν είναι ορθογώνιοι  Οι εξαγωνικές εικόνες έχουν πλεονεκτήματα:  Δεν υπάρχει αμφιλεγόμενη διασύνδεση (θα το δούμε στην επόμενη διαφάνεια)  Είναι ευκολότερη η υλοποίηση κυκλικά συμμετρικών τελεστών

44 44 Η Επανάσταση Της Ψηφιακής Εικόνας (3/4)  Παράδοξα Σύνδεσης (Connectivity Paradoxes)  Σύνδεση: αφορά τον τρόπο με τον οποίο αποφασίζουμε κατά πόσον ένα pixel είναι ενωμένο με κάποιο άλλο.  Τα Παράδοξα Σύνδεσης συχνά συγχύζουν αλγόριθμους οι οποίοι χρησιμοποιούν περιγράμματα.  Πως αποφασίζουμε αν ένα pixel είναι ενωμένο με κάποια άλλα; Δύο τρόποι:  4 – Connectivity: το pixel συνδέεται μόνο με τα 4 γειτονικά του pixel πάνω, κάτω, αριστερά και δεξιά.  8 – Connectivity: το pixel συνδέεται με τα 8 γειτονικά pixel που το περιτριγυρίζουν.

45 45 Η Επανάσταση Της Ψηφιακής Εικόνας (4/4)  Προβλήματα που Δημιουργούνται:  Ας υποθέσουμε ότι θέλουμε να διεξάγουμε κάποια λειτουργία στον διπλανό κύκλο βασιζόμενοι στο περίγραμμά του.  Χρησιμοποιώντας 4 – Connectivity: Η λειτουργία θα θεωρήσει τον κύκλο ως 4 ασύνδετα τμήματα  Χρησιμοποιώντας 8 – Connectivity: Τα μπλε pixels θεωρούνται συνδεδεμένα, όμως το ίδιο και τα άσπρα: επικάλυψη μεταξύ συνδεδεμένων τμημάτων !  Πιθανή λύση: 4-Connectivity στο φόντο, 8-Connectivity στον κύκλο 4-Connectivity8-Connectivity Η εξαγωνική δειγματοληψία δεν υποφέρει από τέτοιου είδους ασάφειες:

46 46 Χρώμα  Μια έγχρωμη εικόνα αναπαρίσταται ως διάνυσμα τιμών. Σε κάθε pixel έχουμε τρεις τιμές φωτεινότητας: Κόκκινο, Πράσινο και Μπλε.  Αυτό συνήθως εκφράζεται ως τρεις διαφορετικές εικόνες: μια για το Κόκκινο, μια για το Πράσινο και μια για το Μπλε χρώμα. Η αναπαράσταση αυτή ονομάζεται RGB. Υπάρχουν και άλλες, όπως η HSL και η CMYK. = + + Έγχρωμη Εικόνα  Μπλε Εικόνα  Πράσινη Εικόνα  Κόκκινη Εικόνα (Στις παραπάνω τρεις εικόνες το λευκό χρώμα είναι ψηλή φωτεινότητα, και το μαύρο χαμηλή)  Συνήθως επεξεργαζόμαστε την εικόνα συνολικής φωτεινότητας (intensity image) I = R + G + B.  Οι περισσότεροι αλγόριθμοι οι οποίοι χρησιμοποιούν χρώμα, επεξεργάζονται τις RGB εικόνες ξεχωριστά ως εικόνες τόνων γκρίζου και έπειτα τις προσθέτουν για να πάρουν το τελικό αποτέλεσμα.

47 47 Κάρτες Συλλογής Πλαισίων (Frame Grab Boards)  Υπάρχουν κάρτες συλλογής πλαισίων για μικρούς και μεγάλους υπολογιστές και για διαφορετικά περιβάλλοντα εργασίας  Κάρτες με FIFO Buffers – συνήθως 1 μέχρι 8 Kb μνήμη  Με ενσωματωμένη μνήμη – αρκετά Megabytes (Matrox Meteor II: 4MB SGRAM)  Τέτοιες κάρτες συνήθως υποστηρίζουν:  Είσοδο βίντεο RS-170  Συνεχής ψηφιοποίηση εικόνας στα 30 πλαίσια ανά δευτερόλεπτο  Επαναδιαμόρφωση ψηφιακού βίντεο για προβολή σε οθόνη  Αποθήκευση εικόνων σε ενσωματωμένη στην συσκευή μνήμη (on-board memory)  Διεξαγωγή ορισμένων βασικών λειτουργιών επεξεργασίας εικόνας  Μερικές εταιρείες:  Matrox (http://www.matrox.com/)http://www.matrox.com/  Imaging Technology, Inc.  Datacube  Data Translation

48 48 Αναπαράσταση Και Αποθήκευση Ψηφιακής Εικόνας (1/4)  Όπως είπαμε, μια εικόνα αποθηκεύεται συνήθως ως ένας πίνακας από ακέραιους αριθμούς  Χρήση πινάκων για αναπαράσταση ψηφιακής εικόνας  Έστω τετραγωνικός πίνακας εικόνας I = [ I(i, j); 0 ≤ i, j ≤ N-1 ] Ο δείκτης i αντιπροσωπεύει αριθμό γραμμής στον πίνακα Ο δείκτης j αντιπροσωπεύει αριθμό στήλης στον πίνακα  Αυτό είναι σε αντίθεση με την συνήθη σημειογραφία των μαθηματικών, όπου χρησιμοποιούμε συνήθως την σύμβαση I(x,y), με το x να υποδηλώνει τον αριθμό στήλης και το y να υποδηλώνει τον αριθμό γραμμής.  Το I(i,j) αντιπροσωπεύει την τιμή του pixel στην γραμμή i, στήλη j

49 49 Αναπαράσταση Και Αποθήκευση Ψηφιακής Εικόνας (2/4)  Μορφή Πίνακα Εικόνας Διαστάσεων NxN I =  Πίνακας Εικόνας Διαστάσεων NxN με Τιμές Pixel

50 50 Αναπαράσταση Και Αποθήκευση Ψηφιακής Εικόνας (3/4)  Ο αριθμός των Bits ανά pixel ο οποίος χρησιμοποιείται καθορίζει το πλήθος χρωμάτων (ή φωτεινότητας) τα οποία μπορεί να πάρει.  4 bits: εικόνες 16 χρωμάτων  8 bits: εικόνες 256 χρωμάτων ή εικόνες τόνων γκρίζου  16, 24, 32 bits: εικόνες πραγματικού χρώματος κλπ  2 bits ανά pixel: δυαδικές εικόνες (binary images)  Περιέχουν μόνο δύο χρώματα (συνήθως άσπρο και μαύρο)  Θα μας απασχολήσουν περισσότερο στο κεφάλαιο 2.

51 51 Αναπαράσταση Και Αποθήκευση Ψηφιακής Εικόνας (4/4) Μορφή πίνακα δυαδικής εικόνας (δεξιά) Εναλλακτικός τρόπος απεικόνισης πίνακα δυαδικής εικόνας (αριστερά)

52 52 Παρατηρήσεις  Οι εικόνες φωτεινότητας τόνων γκρίζου (grey-level images) τυγχάνουν χειρισμού ως πίνακες ακεραίων στους οποίους διεξάγονται αριθμητικές λειτουργίες  Οι δυαδικές εικόνες τυγχάνουν χειρισμού (συνήθως) ως λογικοί πίνακες πάνω στους οποίους εφαρμόζονται λογικοί τελεστές και λειτουργίες  Στις σημειώσεις του μαθήματος ακολουθείται η σύμβαση:  Λογική τιμή 1 = Μαύρο  Λογική τιμή 0 = Άσπρο  Στο MATLAB και στις πλείστες εφαρμογές ΨΕΕ χρησιμοποιείται το ανάποδο: 1 = Άσπρο, 0 = Μαύρο.  Αυτό μπορεί να αλλάξει με την κατάλληλη εντολή

53 53 Τέλος Πρώτου Κεφαλαίου 1. Εισαγωγή 2. Τύποι Εικόνων 3. Γεωμετρία Απεικόνισης 4. Όργανα Απεικόνισης 5. Απόκτηση Εικόνας 6. Αναπαράσταση Εικόνας

54 54 ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας Κεφάλαιο 2 Εισαγωγή

55 55 Δυαδική Επεξεργασία Εικόνας  Δημιουργία Δυαδικών Εικόνων  Λογικές Λειτουργίες  Χρωματισμός Μερών  Δυαδική Μορφολογία  Συμπίεση Δυαδικής Εικόνας Κεφάλαιο 2

56 56 Δυαδικές Εικόνες (1/4)  Μια ψηφιακή εικόνα είναι ένας πίνακας από αριθμούς: δείγματα από τη φωτεινότητα της εικόνας  Κάθε επίπεδο φωτεινότητας κβαντοποιείται: του δίνεται ένας αριθμός από κάποιο πεπερασμένο σύνολο αριθμών (γενικά ακέραιοι αριθμοί με δείκτες από 0 μέχρι K-1)

57 57 Πίνακας εικόνας 10 x 10 γκρι-επιπέδων φωτεινότητας Δυαδικές Εικόνες (2/4)

58 58  Υπάρχουν K = 2^Β πιθανά επίπεδα φωτεινότητας  Κάθε στίγμα αντιπροσωπεύεται από B bits  Οι δυαδικές εικόνες έχουν B = 1 Μια 10 x 10 δυαδική εικόνα Δυαδικές Εικόνες (3/4)

59 59  Πως εμφανίζονται οι δυαδικές εικόνες; Δυαδικό = δύο-τιμές ‘ 1 ’ = μαύρο ‘ 0 ’ = άσπρο Οι λογικές τιμές 0 ή 1 συνήθως δείχνουν την απουσία ή την παρουσία σε κάποιο χαρακτηριστικό της εικόνας σε μια εικόνα γκρι-επιπέδων φωτεινότητας:  Σημεία από υψηλή ή χαμηλή ένταση  Σημεία όπου ένα αντικείμενο είναι παρόν ή απόν  Αφηρημένα χαρακτηριστικά όπως ομαλότητα σε αντίθεση με μη ομαλότητα Δυαδικές Εικόνες (4/4)

60 60 Δημιουργία Δυαδικών Εικόνων (1/2) Είσοδος με Βάση Πινακίδα  Οι δυαδικές εικόνες μπορούν να παραχθούν από ένα απλό όργανο αίσθησης με δυαδική έξοδο  Απλούστερο παράδειγμα: πινακίδα, resistive pad με πέννα φωτός  Όλα τα στίγματα αρχικά παίρνουν την τιμή ‘ 0 ’ I = [I(i, j)], I(i, j) = '0' για όλα (i, j) = (γραμμές,στήλες)

61 61 Δημιουργία Δυαδικών Εικόνων (2/2)  Όταν πίεση η φως πέφτει πάνω στο (i0, j0), η εικόνα παίρνει την τιμή '1': I(i0, j0) = ‘ 1 ’  Αυτό συνεχίζεται μέχρι ο χρήστης τελειώσει το σχέδιο  Χρήσιμο για σχέδια μηχανικών, καταχώρηση χειρόγραφων χαρακτήρων, κλπ.

62 62 Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (1/24)  Συνήθως μια δυαδική εικόνα δημιουργείται από μια γκρι-επιπέδων εικόνα  Πλεονεκτήματα  B-fold μείωση στον χώρο αποθήκευσης  Απλή αφαιρετικότητα των πληροφοριών  Γρήγορη επεξεργασία – λογικές λειτουργίες  Μπορεί να συμπιεστεί περισσότερο

63 63 Απλή Κατωφλίωση  Η απλούστερη λειτουργία στην επεξεργασία εικόνας  Μια ακραία μορφή κβαντοποίησης γκρι-επιπέδων φωτεινότητας  Ορίζουμε ένα ακέραιο κατώφλι T (στην περιοχή της γκρι-κλίμακας επιπέδων φωτεινότητας)  Συγκρίνουμε την ένταση κάθε στίγματος με το T Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (2/24)

64 64 Κατωφλίωση  Ας υποθέσουμε ότι μια γκρι-επιπέδων εικόνα I έχει K γκρι-επίπεδα φωτεινότητας: 0, 1, 2,...., K-1  Επιλέγουμε το κατώφλι T T ανήκει { 0, 1, 2,...., K-1}  Συγκρίνουμε κάθε επίπεδο φωτεινότητας στην γκρι-επιπέδων εικόνα I με το T Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (3/24)

65 65  Ορίζουμε μια νέα δυαδική εικόνα J ως ακολούθως J(i, j) = '0' εάν I(i, j) ≥ T J(i, j) = '1' εάν I(i, j) < T  Μια νέα δυαδική εικόνα J δημιουργείται από την γκρι-επιπέδων εικόνα I Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (4/24)

66 66 Επιλογή Κατωφλίου  Η ποιότητα της δυαδικής εικόνας J που παίρνουμε από την κατωφλίωση της εικόνας I, εξαρτάτε πάρα πολύ από το κατώφλι T  Πραγματικά είναι πολύ χρήσιμο να παρατηρήσουμε τα αποτελέσματα κατωφλίωσης μιας εικόνας σε πολλά διαφορετικά επίπεδα σε σειρά  Διαφορετικά κατώφλια μπορούν να δημιουργήσουν διαφορετικές σημαντικές εικόνες αφαιρετικότητας Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (5/24)

67 67  Μερικές εικόνες δεν δίνουν ενδιαφέροντα αποτέλεσματα όταν κατωφλιώνονται με οποιοδήποτε Τ  Επομένως: Πως αποφασίζει κάποιος αν είναι δυνατή η κατωφλίωση;  Πως αποφασίζει κάποιος για το κατώφλι Τ;  Παράδειγμα κατωφλίωσης στο MATLAB I = imread( ‘ exampleim.tif ’ ); b = im2bw(I,map,0.4); figure1,imshow(I,map); figure2, imshow(b); Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (6/24)

68 68 Ιστόγραμμα Γκρι-Επιπέδων Εικόνας  Το Ιστόγραμμα HI της εικόνας Ι είναι μια γραφική παράσταση κάθε πεδίου φωτεινότητας στην εικόνα Ι  Το HI είναι μια μονοδιάστατη συνάρτηση με πεδίο ορισμού 0,..., K-1  HI(k) = n αν I περιέχει ακριβώς n φορές το επίπεδο φωτεινότητας k, για κάθε k = 0,... K-1 Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (7/24)

69 69 Εμφάνιση Ιστογράμματος  Η εμφάνιση του ιστογράμματος φανερώνει πολλά στοιχεία για την εικόνα Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (8/24)

70 70  Παράδειγμα ιστογράμματος σκοτεινής εικόνας Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (9/24)

71 71  Αυτά μπορεί να είναι τα ιστογράμματα από μια υποφωτισμένη - σκοτεινή και μια υπερφωτισμένη - φωτεινή εικόνα, αντίστοιχα Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (10/24)

72 72  Αυτό το ιστόγραμμα δείχνει καλύτερη χρήση της περιοχής της γκρι-κλίμακας πεδίων φωτεινότητας Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (11/24)

73 73  Παράδειγμα ιστογράμματος καλής κατανομής Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (12/24)

74 74 Ιστόγραμμα Δύο Κατανομών  Η κατωφλίωση συνήθως δουλεύει καλύτερα όταν υπάρχουν σκούρα αντικείμενα σε φωτεινό φόντο  Ή όταν υπάρχουν φωτεινά αντικείμενα σε ένα σκοτεινό φόντο  Οι εικόνες αυτού του τύπου τείνουν να έχουν ιστογράμματα με πολλές διακριτές κορυφές  Αν οι κορυφές είναι καλά χωρισμένες, η επιλογή του κατωφλίου είναι εύκολη Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (13/24)

75 75 Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (14/24)

76 76  Παράδειγμα ιστογράμματος κακώς διαχωρισμένου Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (15/24)

77 77  Το κατώφλι T καθορίζεται κάπου μεταξύ των κορυφών. Μπορεί να είναι μια διαδικασία προσπάθειας και λάθους Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (16/24)

78 78  Παράδειγμα ιστογράμματος καλά διαχωρισμένου Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (17/24)

79 79 Επιλογή Κατωφλίου από το Ιστόγραμμα  Τοποθετώντας το κατώφλι T μεταξύ κορυφών μπορεί να οδηγήσει σε επιθυμητά αποτελέσματα  Ακριβώς που μεταξύ μπορεί να είναι δύσκολο να βρεθεί Κατωφλίωση Γκρι-Επιπέδων Φωτεινότητας (18/24)

80 80  Ένα ιστόγραμμα εικόνας μπορεί να περιέχει πολλές κορυφές. Τοποθετώντας το κατώφλι σε διαφορετικά σημεία δημιουργεί πολύ διαφορετικά αποτελέσματα. Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (19/24)

81 81  Το ιστόγραμμα μπορεί να είναι ‘ επίπεδο ’ κάνοντας την επιλογή κατωφλίου δύσκολη Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (20/24)

82 82 Συζήτηση για τους τύπους Ιστογράμματος  Θα επιστρέψουμε στο ιστόγραμμα μετά, μέσα στα πλαίσια των ποσοτικών ιδιοτήτων των γκρι-πεδίων φωτεινότητας.  Τα ιστογράμματα που περιέχουν δύο κατανομές συχνά δείχνουν αντικείμενα σε φόντο με σημαντική διαφορά στην μέση φωτεινότητα.  Τα ιστογράμματα που περιέχουν δύο περιοχές κατανομών κατωφλιώνονται πολύ εύκολα. Κατωφλίωση Γκρι-Επιπέδων Φωτεινότητας (21/24)

83 83  Το αποτέλεσμα της κατωφλίωσης ενός ιστογράμματος που περιέχει δύο κατανομές είναι ιδανικά, μια απλή δυαδική εικόνα που δείχνει τον διαχωρισμό του αντικειμένου με το φόντο  Παράδειγμα εικόνες από:  Εκτυπωτή  Κύτταρα αίματος σε διάλυμα  Μηχανικά εργαλεία σε μια γραμμή συναρμολόγησης Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (22/24)

84 84  Τα ιστογράμματα με πολλές περιοχές διαφορετικών κατανομών δημιουργούνται συχνά όταν η εικόνα περιέχει διαφορετικά αντικείμενα από διαφορετικούς μέσους όρους φωτεινότητας σε ένα ομογενές φόντο.  Τα επίπεδα ιστογράμματα συνήθως δηλώνουν πιο πολύπλοκες εικόνες, περιέχοντας λεπτομέρειες, με μη-ομοιογενές φόντο, κ.λ.π Κατωφλίωση Γκρι-Επιπέδων Φωτεινότητας (23/24)

85 85  Η κατωφλίωση σπάνια δίνει καλά αποτελέσματα. Συνήθως, μερικοί τύποι διόρθωσης μέρους της εικόνας πρέπει να χρησιμοποιηθούν  Θα μελετήσουμε τεχνικές διόρθωσης μέρους της εικόνας αργότερα σε αυτό το κεφάλαιο Κατωφλίωση Γκρι-επιπέδων Φωτεινότητας (24/24)

86 86 Λογικές Λειτουργίες Σε Δυαδικές Εικόνες Για τις δυαδικές εικόνες που θα χρησιμοποιήσουμε δεν χρειάζεται να δείξουμε την ψηφιοποίηση τους σε στίγματα.

87 87 Βασικές Λογικές Λειτουργίες (1/5) Λογικό Συμπλήρωμα: NOT(X1) = complement of X1 ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ

88 88 Λογικό ΚΑΙ: AND (X1, X2) = X1 Λ X2 ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ Βασικές Λογικές Λειτουργίες (2/5)

89 89 Λογικό Ή: OR (X1, X2) = X1 V X2 ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ Βασικές Λογικές Λειτουργίες (3/5)

90 90 Δυαδική Πλειοψηφία: (περιττός # μεταβλητών μόνο) ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ Βασικές Λογικές Λειτουργίες (4/5)

91 91 Ιδιότητες Άλγεβρας Boole:  NOT [NOT(X)] = X  X1 Λ X2 Λ X3 = (X1 Λ X2) Λ X3 = X1 Λ (X2 Λ X3)  X1VX2VX3 = (X1VX2)VX3 = X1V(X2VX3)  X1 Λ X2 = X2 Λ X1  X1VX2 = X2VX1  (X1 Λ X2)VX3 = (X1VX3) Λ (X2VX3)  (X1VX2) Λ X3 = (X1 Λ X3)V(X2 Λ X3)  NOT(X1 Λ X2) = NOT(X1)VNOT(X2)  NOT(X1VX2) = NOT(X1) Λ NOT(X2) Βασικές Λογικές Λειτουργίες (5/5)

92 92 Λογικές Λειτουργίες στις Εικόνες (1/9) Το συμπλήρωμα μιας εικόνας: J1 = NOT( I1),if J1(i, j) = NOT[ I1(i, j) ] for all (i, j) Αυτό αντιστρέφει την αντίθεση - δημιουργεί ένα δυαδικό αρνητικό.

93 93 Λογικές Λειτουργίες στις Εικόνες (2/9) Η τομή δυο εικόνων: J2 = AND(I1, I2) = I1 Λ I2, if J2(i, j) = AND[ I1(i, j), I2(i, j) ] for all (i, j) Δείχνει την επικάλυψη των ΜΑΥΡΩΝ περιοχών στις εικόνες I1 και I2.

94 94 Λογικές Λειτουργίες στις Εικόνες (3/9) Η ένωση δυο εικόνων: J3 = OR(I1, I2) = I1 V I2, if J3(i, j) = OR[ I1(i, j), I2(i, j) ] for all (i, j) Δείχνει την επικάλυψη των ΛΕΥΚΩΝ περιοχών στις εικόνες I1 και I2.

95 95 Λογικές Λειτουργίες στις Εικόνες (4/9) Παράδειγμα: Μια γραμμή-συναρμολόγησης ελεγχόμενη από σύστημα εικόνας. Παρόμοιο με πολλά συστήματα της βιομηχανίας

96 96 Λογικές Λειτουργίες στις Εικόνες (5/9) Στόχος: Αριθμητική σύγκριση της αποθηκευμένης εικόνας Imodel και της εικόνας λήψης I. Παρατηρούμε ότι το αντικείμενο στην εικόνα I έχει μετακινηθεί πολύ λίγο.

97 97 Λογικές Λειτουργίες στις Εικόνες (6/9) Λογικό ΚΑΙ: Όπως φαίνεται και στο πιο κάτω σχήμα το λογικό ΚΑΙ θα μας δώσει την επικάλυψη:

98 98 Λογικές Λειτουργίες στις Εικόνες (7/9) Μια μέτρηση της μετακίνησης δίνεται από το exclusive or (XOR). XOR(I,Imodel)= OR{AND[Imodel,NOT(I)],AND[NOT(Imodel), I ]}

99 99 Λογικές Λειτουργίες στις Εικόνες (8/9) XOR(I, Imodel) Το XOR δείχνει που είναι το λάθος της μετακίνησης.

100 100 Λογικές Λειτουργίες στις Εικόνες (9/9) Για να αποφασίσουμε κατά πόσο υπάρχει πρόβλημα, ή ελάττωμα, έχουμε το λόγο ή την ποσοστιαία αναλογία: PERCENT = [#μαύρων στιγμάτων XOR(I, Imodel)] / [#άσπρων στιγμάτων Imodel] Αυτό το ποσοστό μπορεί να συγκριθεί με μια προ- υπολογισμένη ανοχή, έστω P, στο σφάλμα της εκατοστιαίας αναλογίας. Αν Percent > P, τότε το εξάρτημα μπορεί είτε να είναι ελαττωματικό, είτε λανθασμένα τοποθετημένο.

101 101 Blob Coloring Χρωματισμός Μερών Είναι μια απλή τεχνική για ταξινόμηση κάποιας περιοχής της εικόνας, καθώς επίσης και διόρθωσης της. Κίνητρο: Η κατωφλίωση εικόνων γκρι δημιουργεί συνήθως μια ατελή δυαδική εικόνα, όπου υπάρχουν:  Άσχετα μέρη ή οπές λόγο θορύβου.  Άσχετα μέρη από κατωφλίωση αντικειμένων μικρού ενδιαφέροντος.  Μη ομαλή ανάκλαση επιφάνειας αντικειμένου.

102 102 Χρωματισμός Μερών Συνήθως είναι επιθυμητό να εξάγουμε ένα μικρό αριθμό αντικειμένων ή ένα μόνο αντικείμενο μετά την κατωφλίωση.

103 103 Χρωματισμός Μερών (1/2) Αλγόριθμος: Έστω δυαδική εικόνα Ι.  Ορίζουμε σαν μια έγχρωμη περιοχή, τον πίνακα R: R(i, j) = αριθμός περιοχής από στίγματα I(i, j)  Αρχικά θέτουμε R = 0 και k = 1, όπου k = μετρητής αριθμού περιοχής  Στη συνέχεια θα σαρώσουμε την εικόνα μας από αριστερά προς δεξιά και από πάνω προς τα κάτω, και θα υπολογίσουμε τα εξής:

104 104 Χρωματισμός Μερών (2/2)  if I(i, j) = 1 and I(i, j-1) = 0 and I(i-1, j) = 0 then set R(i, j) = k and k = k + 1;  if I(i, j) = 1 and I(i, j-1) = 0 and I(i-1, j) = 1 then set R(i, j) = R(i-1, j);  if I(i, j) = 1 and I(i, j-1) = 1 and I(i-1, j) = 0 then set R(i, j) = R(i, j-1);  if I(i, j) = 1 and I(i, j-1) = 1 and I(i-1, j) = 1 then set R(i, j) = R(i-1, j); if R(i, j-1) ≠ R(i-1, j) then set R(i, j-1), R(i-1, j) as equals Ενημέρωση ολων των περιοχών που είναι ισοδύναμες

105 105 Χρωματισμός Μερών Παράδειγμα Από το παράδειγμα αυτό βλέπουμε ότι το χρώμα του μεγαλύτερου μέρους είναι το 2.

106 106 Αφαίρεση ασήμαντων περιοχών (1/5)  Θέτουμε m = "χρώμα" της μεγαλύτερης περιοχής  Ενώ σαρώνουμε την εικόνα από αριστερά προς δεξιά και από πάνω προς τα κάτω υπολογίζουμε if I( i, j) = 1 and R( i, j) ≠ m then set I( i, j) = 0;

107 107 Αφαίρεση ασήμαντων περιοχών (2/5) Μετά από την αφαίρεση των ασήμαντων περιοχών! Η διαδικασία δεν έχει τελειώσει ακόμα! Για να πάρουμε ένα συνεκτικό, συνδεδεμένο αντικείμενο επαναλαμβάνουμε την διαδικασία στα ΛΕΥΚΑ στίγματα.

108 108 Αφαίρεση ασήμαντων περιοχών (3/5) Υπολογίζουμε το συμπλήρωμα του τελευταίου αποτελέσματος συμπλήρωμα

109 109 Αφαίρεση ασήμαντων περιοχών (4/5)  Τότε επαναλαμβάνουμε όλα τα ίδια βήματα: ‘Χρώμα’ του μεγαλύτερου μέρους: 1

110 110 Αφαίρεση ασήμαντων περιοχών (5/5) Συμπλήρωμα Απλό και αποτελεσματικό, αλλά δεν τα διορθώνει όλα! Αφαίρεση ασήμαντων περιοχών

111 111 Δυαδική Μορφολογία (1/2)  Η πιο δυνατή τάξη από δυαδικές λειτουργίες εικόνων ονομάζεται μαθηματική μορφολογία  Οι μορφολογικές λειτουργίες επηρεάζουν το σχήμα των αντικειμένων και περιοχών στις δυαδικές εικόνες.  Όλη η επεξεργασία γίνεται σε τοπική βάση, δηλαδή περιοχές η μορφές αντικειμένων επηρεάζονται με τοπικό τρόπο.

112 112 Δυαδική Μορφολογία (2/2) Μορφολογικές λειτουργίες:  Μεγέθυνση - Διαστολή αντικειμένων (Dilate)  Σμίκρυνση – Συστολή αντικειμένων (Erode)  Ομαλοποίηση ορίων αντικειμένων και περιορισμός μικρών περιοχών η οπών  Γέμισμα κενών και περιορισμός ‘ χερσονήσων ’ Όλα κατορθώνονται χρησιμοποιώντας τοπικές λογικές λειτουργίες!

113 113 Δομικά Στοιχεία ή Παράθυρα Structuring Elements or Windows  Ένα δομικό στοιχείο είναι μια γεωμετρική συσχέτιση μεταξύ στιγμάτων.  Μερικά παραδείγματα δομικών στοιχείων :

114 114  Οι μορφολογικές λειτουργίες ορίζονται από την μετακίνηση ενός παραθύρου πάνω στη συγκεκριμένη εικόνα, με τέτοιο τρόπο ώστε το παράθυρο να κεντράρεται πάνω σε κάθε ένα από τα στίγματα της  Συνήθως αυτό γίνεται σειρά προς σειρά, στήλη προς στήλη  Το δομικό στοιχείο συχνά αναφέρεται ως κινητό παράθυρο. Δυαδική Μορφολογία Δομικά Στοιχεία ή Παράθυρα

115 115  Όταν το δομικό στοιχείο κεντραριστεί πάνω σε μια περιοχή της εικόνας, μια λογική λειτουργία εκτελείται στα στίγματα που καλύπτει το δομικό στοιχείο, οδηγώντας σε μια δυαδική έξοδο πάνω στο κεντρικό στίγμα που καλύπτει το παράθυρο  Συνήθως τα δομικά στοιχεία ορίζονται να έχουν κυκλικά σχήματα, αφού είναι επιθυμητό ότι αντιδρούν με τον ίδιο τρόπο με ένα αντικείμενο ακόμα και αν το αντικείμενο περιστραφεί. Δυαδική Μορφολογία Δομικά Στοιχεία ή Παράθυρα

116 116 Δομικά Στοιχεία ή Παράθυρα (1/2) => => => => => => => ...

117 117 Δομικά Στοιχεία ή Παράθυρα (2/2) => ... Μετά από κάποια ενδιάμεσα βήματα =>=> => ......

118 118 Επίσημος Ορισμός Παραθύρων (1/4)  Χρησιμοποιείται επίσης αργότερα για επεξεργασία εικόνων γκρι και βίντεο.  Ένα παράθυρο είναι μια γεωμετρική συσχέτιση η οποία δημιουργεί μια σειρά από μικρογραφικές εικόνες καθώς περνά πάνω από την εικόνα διαδοχικά σειρά προς σειρά, στήλη προς στήλη (Ακολουθιακή Υλοποίηση).  Στην παράλληλη υλοποίηση, ένας μεγάλος αριθμός από παράθυρα θα καλύπτουν την εικόνα συγχρόνως.

119 119 Επίσημος Ορισμός Παραθύρων (2/4) Μερικά τυπικά Μονοδιάστατα Παράθυρα:  ROW(2M+1) και COL(2M+1).  Αυτά λειτουργούν σε Σειρές και Στήλες Μόνο  Ένα παράθυρο θα καλύπτει πάντα ένα περιττό αριθμό στιγμάτων 2M+1, διαγώνια συμμετρικά στίγματα με το κεντρικό στίγμα  Οι λειτουργίες φίλτρου ορίζονται συμμετρικά με αυτό τον τρόπο.

120 120 Επίσημος Ορισμός Παραθύρων (3/4) Μερικά τυπικά Δυσδιάστατα Παράθυρα:

121 121 Επίσημος Ορισμός Παραθύρων (4/4) Τυπικά Δυσδιάστατα Παράθυρα SQUARE(2M+1), CROSS(2M+1), CIRC(2M+1)  Αυτά είναι τα πιο κοινά σχήματα παραθύρων.  Και πάλι, 2M+1 δείχνει τον περιττό αριθμό στιγμάτων που καλύπτονται από το παράθυρο.  Μπορεί να γενικοποιηθεί σε παράθυρα οποιουδήποτε-μεγέθους που να καλύπτει 2M+1 στίγματα.

122 122 Συμβολισμός Παραθύρων (1/3) Ένα παράθυρο είναι:  Ένας τρόπος συγκέντρωσης τοπικών φωτεινοτήτων εικόνας.  Ένα σύνολο από μετακινήσεις συντεταγμένων Bi = (mi, ni) με κέντρο το (0,0):  B = {B1,..., B2M+1} = {(m1, n1),..., (m2M+1,n2M+1)}

123 123 Συμβολισμός Παραθύρων (2/3) Παραδείγματα Μονοδιάστατων Παραθύρων Β:  B = ROW(2M+1)= {(0, -M),..., (0, M)} = {(0, n); n = -M,..., M} π.χ B = ROW(3)= {(0, -1), (0, 0), (0, 1)}  B = COL(2M+1)= {(-M, 0),..., (M, 0)} = {(m, 0); m = -M,..., M} π.χ B = COL(3)= {(-1, 0), (0, 0), (1, 0)}

124 124 Συμβολισμός Παραθύρων (3/3) Παραδείγματα Δυσδιάστατων Παραθύρων Β:  B = SQUARE (9)= {(-1, -1), (-1, 0), (- 1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)}  B = CROSS(2M+1)= ROW(2M+1) και COL(2M+1) πχ B = CROSS(5)= { (-1, 0), (0, -1), (0, 0), (0, 1), (1, 0) }

125 125 Σύνολο Παραθύρων (1/3) Δεδομένης μιας εικόνας Ι και ενός παραθύρου Β ορίζουμε το σύνολο παραθύρων στις συντεταγμένες εικόνας (i, j) ως: B.I( i, j ) = {I( I + m, j + n); όπου (m, n) Î B και ( i, j ) Î [0,n-1] } το οποίο είναι το σύνολο των στιγμάτων εικόνας που καλύπτεται από το παράθυρο όταν έχει κέντρο τις συντεταγμένες (i, j).

126 126 Σύνολο Παραθύρων (2/3) Παραδείγματα 1D:  B = ROW(3): B˚I( i, j ) = {I( i, j-1 ), I( i, j ), I( i, j+1 )}  B = COL(3): B˚I( i, j ) = {I( i-1, j ), I( i, j ), I( i+1, j )}

127 127 Σύνολο Παραθύρων (3/3) Παραδείγματα 2D:  B = SQUARE (9): B.I( i, j ) = {I( i-1, j-1 ), I( i-1, j ), I( i- 1, j+1 ), I( i, j-1 ), I( i, j ), I( i, j+1 ), I( i+1, j-1 ), I( i+1, j ), I( i+1, j+1 )}  B = CROSS(5): B.I(i, j) = { I( i-1, j ), I( i, j-1 ), I( i, j ), I( i, j+1 ), I( i+1, j ) }

128 128 Γενικά Δυαδικά Φίλτρα  Δείχνουμε τις δυαδικές λειτουργίες G στο σύνολο παραθύρου B.I( i, j ) ως εξής: J( i, j ) = G {B.I( i, j )} = G{I( I + m, j + n ); όπου (m, n) Î B και ( i, j ) Î [0,n-1] }  Εφαρμόζοντας αυτήν σε κάθε στίγμα της εικόνας, δίνει μια φιλτραρισμένη εικόνα J = G[I, B] = [J( i, j ); 0 ≤ i, j ≤ N-1]

129 129 Επεξεργασία Στα Όρια Της Εικόνας Το παράθυρο καλύπτει ‘κενό χώρο’ Συνήθως γεμίζουμε τους κενούς χώρους του παραθύρου με την τιμή του κοντινότερου στίγματος της εικόνας. Αυτό λέγεται Επανάληψη.

130 130 Διαστολή, Συστολή Και Μέση Τιμή  Διαστολή - Καλείται έτσι επειδή αυτή η λειτουργία μεγαλώνει το μέγεθος των ΜΑΥΡΩΝ αντικειμένων στην δυαδική εικόνα.  Συστολή - Καλείται έτσι επειδή αυτή η λειτουργία μειώνει το μέγεθος των ΜΑΥΡΩΝ αντικειμένων στην δυαδική εικόνα.  Μέση τιμή - Στην πραγματικότητα πλειοψηφία. Μια ειδική περίπτωση του γκρι-επιπέδου μεσαίου φίλτρου. Κατέχει ποιοτικές ιδιότητες και των δυο, της διαστολής και της συστολής, αλλά γενικά δεν αλλάζει το μέγεθος του αντικειμένου η του φόντου.

131 131 Διαστολή, Συστολή Και Μέση Τιμή  Διαστολή – Δίδεται ένα παράθυρο Β και μια δυαδική εικόνα Ι  J1 = DILATE (I, B) αν J1(i, j) = OR {B˚I(i, j)} = OR {I(i-m, j-n); (m, n)  B}  Συστολή – Δίδεται ένα παράθυρο Β και μια δυαδική εικόνα Ι  J2 = ERODE (I, B) αν J2(i, j) = AND {B˚I(i, j)} = AND {I(i-m, j-n); (m, n)  B}  Μέση τιμή – Δίδεται ένα παράθυρο Β και μια δυαδική εικόνα Ι  J3 = MEDIAN (I, B) αν J3(i, j) = MAJ {B˚I(i, j)} = MAJ {I(i-m, j-n); (m, n)  B}

132 132 Διαστολή Παράδειγμα 1.

133 133 Διαστολή Παράδειγμα 2.

134 134 Συστολή Παράδειγμα 1.

135 135 Συστολή Παράδειγμα 2.

136 136 Μέση Τιμή Παράδειγμα 1. Το φίλτρο μεσαίου αφαίρεσε το μικρό αντικείμενο Α και την μικρή οπή Β, αλλά δεν άλλαξε το όριο (μέγεθος) της μεγαλύτερης περιοχής C.

137 137 Ποιοτικές Ιδιότητες Διαστολής 1. Αφαιρεί τις πολύ-μικρού μεγέθους οπές του αντικειμένου 2. Η διαστολή επίσης αφαιρεί πολύ-στενά κενά ή κόλπους

138 138 Ποιοτικές Ιδιότητες Διαστολής 3. Η διαστολή του ΜΑΥΡΟΥ μέρους της εικόνας είναι το ίδιο με την συστολή του ΛΕΥΚΟΥ μέρους!

139 139 Ποιοτικές Ιδιότητες Συστολής 1. Αφαιρεί αντικείμενα πολύ - μικρού μεγέθους 2. Η συστολή αφαιρεί επίσης πολύ-στενά ‘ακρωτήρια’

140 140 Ποιοτικές Ιδιότητες Συστολής 3. Η συστολή του ΜΑΥΡΟΥ μέρους της εικόνας είναι το ίδιο με την διαστολή του ΛΕΥΚΟΥ μέρους!

141 141 Συσχέτιση Συστολής Και Διαστολής  Η συστολή και η διαστολή είναι στην πραγματικότητα η ίδια λειτουργία – έχουν δυική (dual) λειτουργία αναφορικά με το συμπλήρωμα (complementation)  Η συστολή και η διαστολή είναι μόνο αντίστροφες κατά προσέγγιση η μια της άλλης  Η διαστολή μιας ήδη υπό συστολή εικόνας, πολύ σπάνια οδηγεί στην αρχική εικόνα. Κατ ’ ακρίβεια η διαστολή δεν μπορεί να  Ξαναδημιουργήσει τις χερσονήσους που αφαίρεσε η συστολή,  Ξαναδημιουργεί μικρά αντικείμενα που αφαίρεσε η συστολή.

142 142 Συσχέτιση Συστολής και Διαστολής  Η συστολή μιας ήδη υπό διαστολή εικόνας πολύ σπάνια οδηγεί στην αρχική εικόνα. Κατ΄ ακρίβεια, η συστολή δεν μπορεί να  Αδειάσει οπές που γέμισαν από την διαστολή,  Ξαναδημιουργεί κενά η κόλπους που γέμισαν από την διαστολή.

143 143 Ποιοτικές Ιδιότητες Μέσης τιμής 1. Το φίλτρο μεσαίου αφαιρεί και αντικείμενα και οπές πολύ-μικρού μεγέθους 2. Το φίλτρο μεσαίου αφαιρεί κενά (κόλπους) και χερσονήσους πολύ-στενές

144 144 Ποιοτικές Ιδιότητες Μέσης τιμής 3. Το φίλτρο μεσαίου γενικά δεν αλλάζει το μέγεθος των αντικειμένων (παρόλο του ότι αλλάζει αυτά) 4. Το φίλτρο μεσαίου είναι η δυική λειτουργία του εαυτού του, αφού MEDIAN [ NOT(I) ] = NOT [ MEDIAN(I) ] 5. Έτσι, το φίλτρο μεσαίου απαλύνει το σχήμα. Μπορούμε επίσης να ορίσουμε και άλλους μηχανισμούς απάλυνσης σχήματος.

145 145 Άνοιγμα-Κλείσιμο και Κλείσιμο-Άνοιγμα  Πολύ αποτελεσματικοί μηχανισμοί που απαλύνουν εικόνες μπορούν να δημιουργηθούν με την επαναλαμβανόμενη χρησιμοποιήσει των λειτουργιών του Ανοίγματος και του Κλεισίματος.  Για μια εικόνα Ι και ένα δομικό στοιχείο Β, ορίζουμε  OPEN-CLOS(I, B) = OPEN [CLOSE (I, B), B]  CLOS-OPEN(I, B) = CLOSE [OPEN (I, B), B]  Αυτές οι λειτουργίες είναι σχετικά όμοιες, όχι όμως μαθηματικά ταυτόσημες.

146 146 Open-Close and Close-Open  Και οι δυο αφαιρούν πολύ μικρά στοιχεία χωρίς να επηρεάζουν πολύ το μέγεθος  Και οι δυο είναι παρόμοιες με το φίλτρου μεσαίου όρου, με εξαίρεση το γεγονός απαλύνουν περισσότερο την εικόνα, (για ένα δεδομένο δομικό στοιχείο Β).

147 147 Open-Close and Close-Open  Αξιοσημείωτες διαφορές μεταξύ Ανοίγματος-Κλεισίματος και Κλεισίματος- Ανοίγματος  Το OPEN-CLOS τείνει να ενώσει γειτονικά αντικείμενα μεταξύ τους  Το CLOS-OPEN τείνει να ενώσει γειτονικές οπές μεταξύ τους

148 148 Open-Close and Close-Open Παράδειγμα 1.

149 149 Open-Close and Close-Open Παράδειγμα 2.

150 150 Σκελετοποίηση (1/10)  Η Σκελετοποίηση αποτελεί ένα τρόπος για να πάρουμε τον μεσαίο άξονα η σκελετό μιας εικόνας.  Δεδομένης μίας εικόνας I 0 και παραθύρου B, ο σκελετός είναι SKEL(Io, B).  Ορίζουμε  I n = ERODE [ · · · ERODE [ERODE(Io, B), B], · · · B ], n διαδοχικές εφαρμογές του ERODE στην I 0 με δομικό στοιχείο το B.  N = max { n: In ≠  }  = empty set Ο μεγαλύτερος αριθμός συστολών πριν την εξαφάνιση της In  S n = I n  NOT[OPEN(I n, B)]

151 151 Σκελετοποίηση (2/10)  Τότε  SKEL(I 0, B) = S 1  S 2  …  S N  Το αποτέλεσμα είναι ο σκελετός, ή ο μετασχηματισμός μεσαίου άξονα, ή η συνάρτηση « φωτιά λιβαδιού » (prairie – fire transform).

152 152 Σκελετοποίηση (3/10) Παράδειγμα 1. Εικόνα Ι 0 : Δομικό Στοιχείο Β :

153 153 Σκελετοποίηση (4/10) SKEL( I 0, B):

154 154 Σκελετοποίηση (5/10) Τα βήματα της εκτέλεσης: Βήμα 1 ο Ι0Ι0 NOT[OPEN(I 0, B)] S0S0

155 155 Σκελετοποίηση (6/10) Βήμα 2 ο Ι1Ι1 NOT[OPEN(I 1, B)] S1S1

156 156 Σκελετοποίηση (7/10) Βήμα 3 ο NOT[OPEN(I 2, B)]Ι2Ι2 S2S2

157 157 Σκελετοποίηση (8/10) NOT[OPEN(I 3, B)] Ι3Ι3 S3S3 Βήμα 4 ο

158 158 Σκελετοποίηση (9/10) Βήμα 5 ο SKEL(I 0 )=S 1  S 2  S 3  S 4

159 159 Σκελετοποίηση (10/10) Παράδειγμα 2. δυαδική εικόνασκελετός (του φόντου)

160 160 Παράδειγμα εφαρμογής: Μέτρηση εμβαδού κυττάρων (1/3)  Απλά βήματα επεξεργασίας  Εύρεση γενικών περιοχών κυττάρων από απλή κατωφλίωση  Εφαρμογή τεχνικών διόρθωσης περιοχής  Χρωματισμός μερών  Αφαίρεση ασήμαντων περιοχών  Κλείσιμο-Άνοιγμα  Απεικόνιση των ορίων του κυττάρου για επαλήθευση λειτουργίας

161 161 Παράδειγμα εφαρμογής:Μέτρηση εμβαδού κυττάρων (2/3)  Απλά βήματα επεξεργασίας  Υπολογισμός του εμβαδού των κυττάρων στην εικόνα με την μέτρηση των στιγμάτων.  Υπολογισμός του πραγματικού εμβαδού χρησιμοποιώντας προβολή  Η προηγούμενη χειρονακτική τεχνική μέτρησης χρειάζεται > 1 ώρα για την ανάλυση κάθε κύτταρου της εικόνας

162 162 Παράδειγμα εφαρμογής:Μέτρηση εμβαδού κυττάρων (3/3)  Ο αλγόριθμος τρέχει σε λιγότερο από ένα δευτερόλεπτο. Χρησιμοποιήθηκε σε > 50,000 εικόνες κύτταρων τα προηγούμενα χρόνια.  Δημοσιεύτηκε στο CRC Press ’ s Image Analysis in Biology ως η τυποποιημένη μέθοδος για την αυτόματη μέτρηση εμβαδού (Automated Area Measurement).

163 163 Κωδικοποίηση Μήκους διαδρομών (1/7)  Ο αριθμός των bits που χρειάζονται για την αποθήκευση μιας N  N δυαδικής εικόνα είναι N 2. Σε πολλές περιπτώσεις, αυτό μπορεί να μειωθεί σημαντικά.  Η κωδικοποίηση μήκους διαδρομών είναι γενικά αποδοτική όταν οι ΛΕΥΚΕΣ και ΜΑΥΡΕΣ περιοχές δεν είναι μικρές.

164 164 Κωδικοποίηση Μήκους διαδρομών (2/7)  Πως δουλεύει η κωδικοποίηση μήκους διαδρομών (Run – Length Coding):  Οι δυαδικές εικόνες αποθηκεύονται (η μεταφέρονται) γραμμή-προς-γραμμή (σειρά- προς-σειρά).

165 165 Κωδικοποίηση Μήκους διαδρομών (3/7)  Πώς δουλεύει η κωδικοποίηση μήκους διαδρομών (Συνέχεια)  Για κάθε γραμμή της εικόνας, που αριθμείται με m:  Αποθηκεύουμε την τιμή του πρώτου στίγματος ('0' η '1') στην σειρά m για αναφορά  Θέτουμε τον μετρητή c = 1  Για κάθε στίγμα στην εικόνα:  Εξετάζουμε το επόμενο στίγμα στα δεξιά  Αν είναι το ίδιο με το τρέχον στίγμα, θέτουμε c = c + 1  Αν είναι διαφορετικό με το τρέχον στίγμα, αποθηκεύουμε το c και θέτουμε c = 1  Συνεχίζουμε μέχρι να φτάσουμε το τέλος της γραμμής

166 166 Κωδικοποίηση Μήκους διαδρομών (4/7)  Κάθε μήκος-διαδρομών αποθηκεύεται χρησιμοποιώντας b bits. Παράδειγμα 1. ‘1’75831

167 167 Κωδικοποίηση Μήκους διαδρομών (5/7)  Σχόλια για την κωδικοποίηση μήκους διαδρομών  Σε μερικές εικόνες μπορεί να δώσει εξαιρετική συμπίεση χωρίς απώλειες πληροφοριών.  Αυτό θα συμβεί αν η εικόνα περιέχει πολλές διαδρομές του 1's και 0's.

168 168 Κωδικοποίηση Μήκους διαδρομών (6/7)  Αν η εικόνα περιέχει μόνο πολύ μικρές διαδρομές, τότε ο κώδικας μήκους-διαδρομών μπορεί να μεγαλώσει τον χώρο αποθήκευσης. Παράδειγμα 2. ‘1’111111111111111111111111

169 169 Κωδικοποίηση Μήκους διαδρομών (7/7)  Σε αυτή την χειρότερη περίπτωση η αποθήκευση πολλαπλασιάζεται με τον αριθμό b.  Κανόνας: Ο μέσος όρος μήκους διαδρόμων L πρέπει να ικανοποιεί την σχέση: L > b.

170 170 Αντιπροσώπευση Περιγράμματος Και Κώδικας Αλυσίδας (1/3)  Μπορούμε να διαχωρίσουμε δυο γενικούς τύπους διάδικων εικόνων:  εικόνες περιοχών  εικόνες περιγραμμάτων Εικόνα ΠεριοχώνΕικόνα Περιγραμμάτων

171 171 Αντιπροσώπευση Περιγράμματος Και Κώδικας Αλυσίδας (2/3)  Για τις εικόνες περιγραμμάτων απαιτούμε ειδικότερα:  Κάθε ΜΑΥΡΟ στίγμα στην εικόνα περιγράμματος πρέπει να έχει το πολύ δυο ΜΑΥΡΑ από τα 8 – γειτονικά στίγματα Ένα ΜΑΥΡΟ στίγμα και 8 - γείτονες

172 172 Αντιπροσώπευση Περιγράμματος Και Κώδικας Αλυσίδας (3/3)  Μία εικόνα περιγράμματος περιέχει μόνο ευθείες και καμπύλες που έχουν πλάτος ένα στίγμα ή και απλά σημεία ενός στίγματος.

173 173 Κώδικας Αλυσίδας (1/7)  Ο κώδικας αλυσίδας είναι μια μέθοδος κωδικοποίησης περιγράμματος υψηλής απόδοσης.  Παρατηρείστε ότι αν οι αρχικές συντεταγμένες (i, j) ενός 8-συνδεδεμένου περιγράμματος είναι γνωστές, τότε τα υπόλοιπα στοιχεία του περιγράμματος μπορούν να κωδικοποιηθούν δίνοντας τις κατευθύνσεις στην οποία το περίγραμμα διαδίδεται.

174 174 Κώδικας Αλυσίδας (2/7) Παράδειγμα 1. ΠερίγραμμαΑρχικό σημείο και Κατευθύνσεις

175 175 Κώδικας Αλυσίδας (3/7)  Για το σκοπό αυτό, χρησιμοποιούμε την ακόλουθη κωδικοποίηση 8-κατευθύνσεων.

176 176 Κώδικας Αλυσίδας (4/7)  Δεδομένου ότι οι αριθμοί, 1, 2, 3, 4, 5, 6, 7 μπορούν να κωδικοποιηθούν με τα δυαδικά ισοδύναμα τους των 3-bit : 000, 001, 010, 011, 100, 101, 110, 111, η τοποθεσία κάθε σημείου σε ένα περίγραμμα μετά το αρχικό σημείο μπορεί να κωδικοποιηθεί με 3 bits.

177 177 Κώδικας Αλυσίδας (5/7) Παράδειγμα 1.

178 178 Κώδικας Αλυσίδας (6/7)  Ο κώδικας αλυσίδας για το παράδειγμα (μετά την καταγραφή των αρχικών συντεταγμένων (i 0, j 0 ):  Στο δεκαδικό: 1, 0, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 4  Στο δυαδικό: 001, 000, 001, 001, 001, 001, 011, 011, 011, 100, 100, 101, 100  Η συμπίεση που έχουμε είναι σημαντική: κωδικοποίηση του περιγράμματος από M-bit συντεταγμένες (M = 9 για 512 x 512 εικόνες) χρειάζεται 6 φορές την αρχική μνήμη.

179 179 Κώδικας Αλυσίδας (7/7)  Για κλειστά περιγράμματα, οι αρχικές συντεταγμένες μπορούν να επιλεχθούν τυχαία. Αν το περίγραμμα είναι ανοικτό, τότε συνήθως είναι ένα τελικό σημείο (ενός γείτονα στο σύστημα 8 – κατευθύνσεων.  Η τεχνική αυτή είναι αποτελεσματική σε πολλές εφαρμογές μηχανικής όρασης και ανάγνωσης προτύπων π.χ. ανάγνωση χαρακτήρων.

180 180 Κεφάλαιο 3 Ιστόγραμμα Εικόνας και Λειτουργίες Σημείου ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας

181 181 Λειτουργίες Διανυσμάτων Και Πινάκων (1/4)  Το διάνυσμα είναι ένας μονοδιάστατος πίνακας. Τα διανύσματα θα θεωρούνται ότι είναι στήλες διανυσμάτων (N x 1). Για παράδειγμα, το μοναδιαίο διάνυσμα είναι: e = (N x 1)

182 182 Λειτουργίες Διανυσμάτων Και Πινάκων (2/4)  Η ανάστροφος (transpose) είναι μια σειρά διανυσμάτων (1 x N), και δεικνύετε :  Μια δυαδική εικόνα είναι ένας πίνακας η μήτρα από ακέραιους αριθμούς =  Δεικνύουμε ένα (τετραγωνικό) πίνακα εικόνας I = [I(i, j); 0 ≤ i, j ≤ N-1]

183 183 Λειτουργίες Διανυσμάτων Και Πινάκων (3/4) I = I T =  Ο ανάστροφος (transpose) του πίνακα δεικνύετε

184 184 Λειτουργίες Διανυσμάτων Και Πινάκων (4/4)  Οι σειρές της I T είναι οι στήλες της I και οι στήλες της I T είναι οι στήλες της I. Σημειώστε ότι [I T ] T = I.  Ένας συμμετρικός πίνακας ικανοποιεί την σχέση I T = I.

185 185 Βασική Άλγεβρα Πινάκων (1/9)  Θεωρούμαι μόνο διανύσματα και τετράγωνους πίνακες (N x N), αλλά όλα τα υπόλοιπα μπορούν να προεκταθούν σε μη-τετράγωνους πίνακες (N x M)  Το εσωτερικό γινόμενο (N x 1) δυο διανυσμάτων a και b είναι K = = a(i)b(i)  Το οποίο είναι μονόμετρος (αριθμός) (όχι διάνυσμα)

186 186 Βασική Άλγεβρα Πινάκων (2/9)  Το γινόμενο δυο πινάκων (N x N) : I = J =  είναι: K = IJ

187 187 Βασική Άλγεβρα Πινάκων (3/9)  Τα στοιχεία του γινομένου των πινάκων K είναι: K(i, j) = I(i, n)J(n, j).  Αυτό είναι απλά το εσωτερικό γινόμενο της ith στήλης του διανύσματος ii της I T και της στήλης διανύσματος jj της J: K(i, j) = ii T jj.

188 188 Βασική Άλγεβρα Πινάκων (4/9) Σημαντικές Σημειώσεις  Δυο τετραγωνικοί πίνακες πρέπει να έχουν το ίδιο μέγεθος για να πάρουμε το γινόμενο τους.  Στο γινόμενο των πινάκων δεν επιτρέπεται η αντιμετάθεση (commute). Δηλαδή δεν είναι γενικά αληθές ότι : IJ = JI.

189 189 Βασική Άλγεβρα Πινάκων (5/9) Πίνακας Ταυτότητας  Ο (N x N) πίνακας ταυτότητας είναι 1 =  Καλείται έτσι επειδή το γινόμενο της 1 με κάθε N x N πίνακα J 1J = J1 = J

190 190 Βασική Άλγεβρα Πινάκων (6/9) Αντιστροφή Πίνακα  Σημειώστε ότι I-1 αντιμετατίθεται με το I.  Η αντιστροφή ενός N x N πίνακα I είναι ένας άλλος N x N πίνακας που δεικνύετε I-1 II -1 = I -1 I = 1  Καλείται Αντίστροφος πίνακας επειδή:

191 191 Βασική Άλγεβρα Πινάκων (7/9) Αντιστροφή Πίνακα (συνέχεια)  Πότε υπάρχει ο αντίστροφος πίνακας; Πότε είναι σταθερός;  Ο αντίστροφος του αντίστροφου δίνει πίσω τον αρχικό πίνακα: [I -1 ] -1 = I

192 192 Βασική Άλγεβρα Πινάκων (8/9) Αντιστροφή Πίνακα  Παράδειγμα: I = I -1 =  Ο υπολογισμός του αντίστροφου ενός πίνακα με το χέρι είναι μια σκληρή αλγεβρική διαδικασία, ειδικά για μεγάλους πίνακες.

193 193 Βασική Άλγεβρα Πινάκων (9/9) Αντιστροφή Πίνακα  Δεν θα δώσουμε τις λεπτομέρειες εδώ. Οι πιο πολλές βιβλιοθήκες σε μαθηματικά προγράμματα υπολογιστών έχουν την εντολή αντιστροφής πινάκων διαθέσιμη (π.χ., Matlab, Labview, IDL, IMSL).

194 194 Aπλές Λειτουργίες Ιστογράμματος (1/6)  Θυμηθείτε: το ιστόγραμμα πεδίων φωτεινότητας H I μιας εικόνας I είναι μια γραφική παράσταση της συχνότητας ύπαρξης κάθε πεδίου φωτεινότητας στην I  HI είναι μια μονοδιάστατη συνάρτηση με πεδίο ορισμού 0,..., K-1 : H I (k) = n αν το πεδίο φωτεινότητας k υπάρχει (ακριβώς) n φορές στην I, Για κάθε k = 0,... K-1.

195 195 Απλές Λειτουργίες Ιστογράμματος (2/6)  Το ιστόγραμμα H I δεν περιέχει πληροφορίες του χώρου της I – μόνο πληροφορίες για την σχετική συχνότητα φωτεινότητας.

196 196 Απλές Λειτουργίες Ιστογράμματος (3/6)  Ωστόσο:  Χρήσιμες πληροφορίες μπορούν να παρθούν από το ιστόγραμμα.  Η ποιότητα της εικόνας επηρεάζεται (βελτίωση ποιότητας, τροποποίηση) με την αλλαγή του ιστογράμματος.

197 197 Απλές Λειτουργίες Ιστογράμματος (4/6) Μέση Τιμή Οπτικής Πυκνότητας - Average Optical Density  Η μέτρηση μέσης τιμής φωτεινότητας μιας εικόνας I: AOD(I) = =

198 198 Απλές Λειτουργίες Ιστογράμματος (5/6)  Μπορεί να υπολογιστεί και από το ιστόγραμμα επίσης kH I (k) όπου ο kος όρος = (επίπεδο φωτεινότητας k) x (# ύπαρξης του k) Μέση Τιμή Οπτικής Πυκνότητας

199 199 Απλές Λειτουργίες Ιστογράμματος (6/6)  Παρατηρώντας το ιστόγραμμα μπορεί να αποκαλυφθούν πιθανά λάθη στην επεξεργασία εικόνας: Μέση Τιμή Οπτικής Πυκνότητας Low AOD High AOD  Τρόποι διόρθωσης τέτοιων λαθών χρησιμοποιούν το ιστόγραμμα.

200 200 Γραμμικές Λειτουργίες Απλού Σημείου (1/8)  Η λειτουργία απλού σημείου σε μία εικόνα Ι είναι μια συνάρτηση f η οποία χαρτογραφεί ή προσδιορίζει την εικόνα Ι σε μια άλλη εικόνα J με τη λειτουργία της στο κάθε στίγμα της I: J(i, j) = f[I(i, j)], 0 ≤ i, j ≤ N-1  Η ίδια συνάρτηση f εφαρμόζεται σε όλες τις συντεταγμένες της εικόνας.  Αυτό είναι διαφορετικό από τις τοπικές λειτουργίες όπως ΑΝΟΙΚΤΌ, ΚΛΕΙΣΤΟ, κ.λπ., δεδομένου ότι αυτές είναι συναρτήσεις και του Ι (ι, j) και των γειτόνων του.

201 201 Γραμμικές Λειτουργίες Απλού Σημείου (2/8)  Οι λειτουργίες απλού στίγματος δεν αλλάζουν τις σχέσεις χώρου μεταξύ των στιγμάτων. Αλλάζουν το ιστόγραμμα της εικόνας, και έτσι την ολική εμφάνιση της εικόνας.  Οι γραμμικές λειτουργίες απλού σημείου είναι η απλούστερη τάξη λειτουργιών απλού σημείου. Μετατοπίζουν και κλιμακώνουν τα πεδία φωτεινότητας της εικόνας.

202 202 Γραμμικές Λειτουργίες Απλού Σημείου (3/8)  Θεωρούμαι ότι το L πέφτει στο πεδίο -(K-1) ≤ L ≤ K-1 (± την κανονικοποιημένη κλίμακα γκρί) Μετατόπιση Εικόνας - Image Offset J(i, j) = I(i, j) + L, for 0 ≤ i, j ≤ N-1 Έτσι, η ίδια σταθερά L προστίθεται στην τιμή κάθε στίγματος εικόνας.

203 203 Γραμμικές Λειτουργίες Απλού Σημείου (4/8) Μετατόπιση Εικόνας  Αν L > 0, J θα είναι η εικόνα I φωτεινότερη. Αλλιώς η εμφάνιση της θα είναι ουσιαστικά η ίδια.  Αν L < 0, J θα είναι η σκοτεινότερη εκδοχή της εικόνας I.  Η πρόσθεση του L μετατοπίζει το ιστόγραμμα με την τιμή L στα αριστερά η δεξιά

204 204 Γραμμικές Λειτουργίες Απλού Σημείου (5/8) Μετατόπιση Εικόνας Histograms of additive image offsets  Η είσοδος και έξοδος του ιστογράμματος συσχετίζονται με: H J (k) = H I (k-L)

205 205 Γραμμικές Λειτουργίες Απλού Σημείου (6/8) Παράδειγμα:  Θεωρούμαι ότι είναι επιθυμητό να συγκρίνουμε πολλαπλές εικόνες I1, I2,..., In της ίδιας σκηνής. Ωστόσο, οι εικόνες πάρθηκαν από διαφορετικές συνθήκες φωτεινότητας.  Μια λύση: ισοστάθμιση των AOD's των εικόνων.  Αν η κλίμακα πεδίων φωτεινότητας της εικόνας είναι 0,..., K-1, ένα λογικό AOD είναι K/2.

206 206 Γραμμικές Λειτουργίες Απλού Σημείου (7/8) Παράδειγμα (συνέχεια):  Θέτουμε Lm = AOD(Im), για m = 1,..., n. Τότε ορίζουμε την ‘ ισοστάθμιση- AOD ’ εικόνων J1, J2,..., Jn σύμφωνα με Jm(i, j) = Im(i, j) - Lm + K/2, for 0 ≤ i, j ≤ N- 1

207 207 Γραμμικές Λειτουργίες Απλού Σημείου (8/8) Παράδειγμα (συνέχεια):  Το αποτέλεσμα:. etc.

208 208 Κλιμάκωση Εικόνας (1/5)  Θεωρούμαι P > 0 (όχι απαραίτητα ακέραιος). Η κλιμάκωση εικόνας ορίζεται από την συνάρτηση J(i, j) = P · I(i, j), for 0 ≤ i, j ≤ N-1 Έτσι, Ρ πολλαπλασιάζει κάθε τιμή στίγματος της εικόνας. Στην πράξη: J(i, j) = INT[ P · I(i, j) + 0.5 ], for 0 ≤ i, j ≤ N-1 όπου INT[ R ] = ο πλησιέστερος ακέραιος που είναι ≤ R.

209 209 Κλιμάκωση Εικόνας (2/5)  Αν P > 1, J θα έχει πιο πλατύ πεδίο φωτεινότητας από την εικόνα Ι.  Αν P < 1, J θα έχει πιο στενό πεδίο φωτεινότητας από την εικόνα I.

210 210 Κλιμάκωση Εικόνας (3/5)  Πολλαπλασιάζοντας την σταθερά Ρ επεκτείνει ή στενεύει το ‘πλάτος’ του ιστογράμματος της εικόνας με κάποιο συντελεστή Ρ:

211 211 Κλιμάκωση Εικόνας (4/5)  Σχόλια :  Μια εικόνα η οποία έχει συμπιεσμένη κλίμακα πεδίων φωτεινότητας γενικά έχει χαμηλή οπτική αντίθεση.  Μια τέτοια εικόνα μπορεί να έχει « ξεθωριασμένη » εμφάνιση.

212 212 Κλιμάκωση Εικόνας (5/5)  Μια εικόνα με φαρδύ πεδίο φωτεινότητας γενικά έχει υψηλή οπτική αντίθεση.  Μια τέτοια εικόνα μπορεί να έχει πιο κτυπητή, ορατή εμφάνιση.

213 213 Αποκοπή (1/2)  Γενικά, η διαθέσιμη κλίμακα φωτεινότητας της μετασχηματισμένης εικόνας J είναι η ίδια όπως αυτή της αρχικής εικόνας I: {0,..., K-1}.  Όταν κάνουμε τον μετασχηματισμό J(i, j) = P · I(i, j) + L, for 0 ≤ i, j ≤ N-1 πρέπει να φροντίζουμε η μέγιστη και ελάχιστη τιμή Jmax and Jmin να ικανοποιεί : Jmax ≤ K-1 και Jmin ≥ 0.

214 214 Αποκοπή (2/2)  Στην καλύτερη περίπτωση, οι τιμές έξω απ ’ αυτή την κλίμακα θα “ ψαλιδιστούν ”.  Στην χειρότερη περίπτωση, καταστάσεις υπερχείλισης (overflow) ή λανθασμένου πρόσημου (sign-error) συνθήκες μπορεί να εμφανιστούν. Σε αυτή την περίπτωση, η τιμή της κλίμακας φωτεινότητας που δίνεται σε ένα λανθασμένο στίγμα θα είναι πολύ απροσδιόριστη.

215 215 Επέκταση Αντίθεσης κλίμακας (1/4)  Είναι πιο κοινή γραμμική λειτουργία στίγματος. Θεωρούμαι ότι η Ι έχει ένα συμπιεσμένο ιστόγραμμα:

216 216 Επέκταση Αντίθεσης κλίμακας (2/4) Ι  Ορίζουμε το Α και Β να είναι το min και max επίπεδο φωτεινότητας στην Ι. Ορίζουμε :  J(i, j) = P · I(i, j) + L έτσι ώστε :  P · A+L = 0P · B + L = (K-1).  P · A+L = 0 και P · B + L = (K-1).

217 217 Επέκταση Αντίθεσης κλίμακας (3/4)  Το αποτέλεσμα της λύσης του συστήματος 2 εξισώσεων με 2 άγνωστους (P, L) είναι μια εικόνα J η οποία έχει ιστόγραμμα που οι τιμές του ανήκουν σε όλη την κλίμακα φωτεινοτήτων:

218 218 Επέκταση Αντίθεσης κλίμακας (4/4)  Η λύση στις πιο πάνω εξισώσεις είναι : και ή J (i,j) = [ I ( i,j) – A ]

219 219 Μη Γραμμικές Λειτουργίες Στίγματος  Μια μη-γραμμική λειτουργία στίγματος στην εικόνα Ι είναι μια σημειακή συνάρτηση f που σχετίζει την I με την J: J(i, j) = f [I (i, j) ] for 0 ≤ i, j ≤ N-1 Όπου f είναι μια μη-γραμμική συνάρτηση.

220 220 Μη Γραμμικές Λειτουργίες Στίγματος  Αυτή είναι μια πολύ μεγάλη τάξη συναρτήσεων.  Ωστόσο, μόνο μερικές χρησιμοποιούνται συχνά:  J(i, j) = |I(i, j)| (absolute value or magnitude)  J(i, j) = [I(i, j)]2 (square-law)  J(i, j) = sqrt [ I (i, j) ](square root)  J(i, j) = log[1+I (i, j) ] (logarithm)  J(i, j) = exp[I (i, j)] = (i, j) (exponential)

221 221 Λογαριθμική Συμπίεση Πεδίου ( Range ) (1/5)  Κίνητρο: Μια εικόνα μπορεί να περιέχει πλούσιες πληροφορίες, απαλή εναλλαγή χαμηλών φωτεινοτήτων – και πολύ μικρές φωτεινές περιοχές.  Τα φωτεινά στίγματα θα κυριαρχήσουν την ορατή αντίληψη που έχουμε για την εικόνα.

222 222 Λογαριθμική Συμπίεση Πεδίου ( Range ) (2/5)  Ένα τυπικό Ιστόγραμμα.

223 223 Λογαριθμική Συμπίεση Πεδίου ( Range ) (3/5)  Ο λογαριθμικός μετασχηματισμός : J(i, j) = log[1+I(i, j)] συμπιέζει μη-γραμμικά και ισοσταθμίζει τα επίπεδα φωτεινότητας.  Οι φωτεινές εντάσεις συμπιέζονται πολύ περισσότερο – έτσι οι ασθενές λεπτομέρειες αναδύονται.

224 224 Λογαριθμική Συμπίεση Πεδίου ( Range ) (4/5)  Το τέντωμα αντίθεσης πλήρους κλίμακας χρησιμοποιεί μετά όλο το πεδίο φωτεινοτήτων. Λογαριθμικός μετασχηματισμός τέντωσε τις αντιθέσεις.

225 225 Λογαριθμική Συμπίεση Πεδίου ( Range ) (5/5)  Χρήσιμο για εύρεση ασθενών κοσμικών αντικειμένων:  Χρήσιμο για να δείχνουμε εικόνες μετασχηματισμού Fourier.

226 226 Αλλαγή Μορφής Και Ταύτιση Ιστογράμματος  Θα εξετάσουμε τώρα μεθόδους για αλλαγή μορφής ιστογράμματος.  Επιτυγχάνεται με λειτουργίες απλού στίγματος: η μορφή αντικειμένων και η τοποθεσία δεν αλλάζουν.

227 227 Ισοστάθμιση Ιστογράμματος  Μια εικόνα με ισοσταθμισμένο ιστόγραμμα κάνει πλούσια χρήση των διαθέσιμων πεδίων φωτεινότητας. Αυτή μπορεί να είναι μια εικόνα με : 1. Απαλές διαβαθμίσεις στην κλίμακα φωτεινότητας που να καλύπτουν πολλαπλά επίπεδα φωτεινότητας γκρι. 2. Πολλαπλή υφή που να καλύπτει πολλαπλά επίπεδα φωτεινότητας.

228 228 Ιστόγραμμα Κανονικότητας (1/3) Ορισμός: κ=0,1, …., K-1 Αθροίζοντας: όπου είναι η πιθανότητα του επιπέδου φωτεινότητας κ να υπάρχει (σε οποιοδήποτε δεδομένο στίγμα)

229 229 Ιστόγραμμα Κανονικότητας (2/3) Το συσσωρευτικό ιστόγραμμα είναι: για r=0,1,2, …., K-1 όπου μια αύξουσα συνάρτηση με

230 230 Ιστόγραμμα Κανονικότητας (3/3) (i, j): Άρα, για όλα τα σημεία (i, j): Επίσης … για r=0, …, K-1

231 231 Συνεχές Ιστόγραμμα p(x)P(x) Έστω οτι τα p(x) και P(x) είναι συνεχή: (μπορεί να θεωρηθούν σαν συναρτήσεις πυκνότητας πιθανότητας (pdf) και συσσωρευτική διανομή (cdf)). Τότε: p(x) = dP(x)/dx Σημείωση:  υπάρχει η μπορεί να οριστεί κατά σύμβαση.

232 232 Συνεχής Ισοστάθμιση Και Αλλαγή Μορφής (1/5) Ι, p(x), P(x)q(x), Q(x).  Μετασχηματίζουμε τα (συνεχή): Ι, p(x), P(x) σε J, q(x), Q(x).  Η ακόλουθη εικόνα θα έχει ένα ισοσταθμισμένο ιστόγραμμα: J = P(I) (J(i, j) = P[I(i, j)] για κάθε (i, j))

233 233 Συνεχής Ισοστάθμιση Και Αλλαγή Μορφής (2/5) QJ Το συσσωρευτικό ιστόγραμμα Q της J:

234 234 Συνεχής Ισοστάθμιση Και Αλλαγή Μορφής (3/5) έτσι: Q(x) = dQ(x)/dx = 1 for 0 < x < 1 Τι παρατηρούμε?  Χρειάζεται τέντωμα αντίθεσης

235 235 Συνεχής Ισοστάθμιση Και Αλλαγή Μορφής (4/5) q(x),Q(x). Έστω ότι παίρνουμε κάποια τυχαία q(x),Q(x). Τότε ορίζουμε: για όλα τα (i,j)

236 236 Συνεχής Ισοστάθμιση Και Αλλαγή Μορφής (5/5) Το συσσωρευμένό ιστόγραμμα της J είναι: Σημείωση: Τα πιο πάνω μπορούν να προσεγγιστούν μόνο με διακριτά ιστογράμματα

237 237 Ισοστάθμιση Ιστογράμματος (1/3) Ι Έστω η εικόνα Ι: J 1 = P(I)  Ορίζουμε το συσσωρευτικό ιστόγραμμα εικόνας J 1 = P(I) όπου

238 238 Ισοστάθμιση Ιστογράμματος (2/3) Παρατηρήσεις:  Σε κάθε στίγμα, αυτό είναι το συσσωρευτικό ιστόγραμμα που υπολογίζεται στα επίπεδα φωτεινότητας του στίγματος. J 1  Τα στοιχεία της συσσωρευτικής πιθανότητας της εικόνας J 1 θα κατανεμηθούν γραμμικά κατά προσέγγιση μεταξύ 0 και 1.

239 239 Ισοστάθμιση Ιστογράμματος (3/3) J 1 0,..., κ-1 J Κλιμακώνουμε το J 1 για να καλύψει την κλίμακα 0,..., κ-1, δημιουργώντας εικόνα ισοσταθμισμένου ιστογράμματος J: J(i, j) = int [ (K-1) · J 1 (i, j) + 0.5 ]

240 240 Παράδειγμα Ισοστάθμισης Ιστογράμματος (1/7) 4 x 4Ι Δίνεται μια 4 x 4 εικόνα Ι με επίπεδα φωτεινότητας {0,..., 15} (K-1 = 15): I = 1134 2532 8182 45311

241 241 Παράδειγμα Ισοστάθμισης Ιστογράμματος (2/7) Το ιστόγραμμα της είναι: k0123456789101112131415 H(k)0333220020010000

242 242 Παράδειγμα Ισοστάθμισης Ιστογράμματος (3/7) Κανονικοποίηση Ιστογράμματος: k0123456789101112131415 p(k)000000000 3 16 3 16 3 16 2 16 2 16 2 16 1 16

243 243 Παράδειγμα Ισοστάθμισης Ιστογράμματος (4/7) J 1 Υπολογισμός ενδιάμεσης εικόνας J 1 : J 1 J 1 = 3/16 9/1611/1 6 6/1613/1 6 9/166/16 15/1 6 3/1615/1 6 6/16 11/1 6 13/1 6 9/1616/1 6

244 244 Παράδειγμα Ισοστάθμισης Ιστογράμματος (5/7) J Υπολογισμός ‘ ισοσταθμισμένης ’ εικόνας J: J J = 33810 61286 143 6 1012815

245 245 Παράδειγμα Ισοστάθμισης Ιστογράμματος (6/7) Το νέο, ισοσταθμισμένο ιστόγραμμα μοιάζει με το ακόλουθο: k0124567891011121314153 H(k)0000030302020213

246 246 Παράδειγμα Ισοστάθμισης Ιστογράμματος (7/7) Δημιουργία Ιστογράμματος:

247 247 Ισοστάθμισης Ιστογράμματος (συνέχεια…) Τα ύψη H(k) δεν μπορούν να μειωθούν, απλώς μετακινούνται έτσι:  Η ισοστάθμιση ψηφιακού ιστογράμματος δεν ‘ ισοσταθμίζει ’ στην πραγματικά το ιστόγραμμα, απλώς το κάνει πιο ‘ κολακευτικό ’ με την εξάπλωση του ιστογράμματος.  Ο χώρος που δημιουργείται είναι πολύ χαρακτηριστικός του ‘ ισοσταθμισμένου ’ ιστογράμματος, ειδικά όταν το αρχικό ιστόγραμμα είναι πολύ συμπιεσμένο.

248 248 Παράδειγμα Ισοστάθμισης Ιστογράμματος στο ΜatLab I = imread( ‘ exampleim.tif ’ ); J = histeq(I); figure,subplot(2,1,1),imshow(I); subplot(2,1,2), imhist(J subplot(2,1,2), imhist(J);

249 249 Αλλαγή Μορφής Ιστογράμματος (1/3) J Δημιουργεί μια αλλαγμένη εικόνα J με μια κατά προσέγγιση προσδιορισμένη μορφή ιστογράμματος, όπως τρίγωνο ή καμπύλη μορφής καμπάνας. Ορίζουμε το να είναι η επιθυμητή μορφή ιστογράμματος με τις αντίστοιχες κανονικές τιμές (πιθανότητες).

250 250 Αλλαγή Μορφής Ιστογράμματος (2/3) 1. Ορίζουμε το συσσωρευτικό ιστόγραμμα εικόνας όπως πριν: 2. Επίσης ορίζουμε τις συσσωρευτικές πιθανότητες:

251 251 Αλλαγή Μορφής Ιστογράμματος - Αλγόριθμος (3/3) n(i, j) Ορίζουμε n(i, j) να δεικνύει την μικρότερη τιμή του n ώστε: Τότε παίρνουμε: J(i, j) = n(i, j) Αυτό είναι μια τυπικότητα για:

252 252 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (1/7) Υποθέστε ότι έχουμε την ίδια εικόνα με το προηγούμενο παράδειγμα Ι Ι = 1134 2532 8182 45311

253 253 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (2/7) J 1 Υπολογισμός ενδιάμεσης εικόνας J 1 : J 1 J 1 = 3/16 9/1611/16 6/1613/169/166/16 15/163/1615/166/16 11/1613/169/1616/16

254 254 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (3/7) Το εφαρμόζουμε στο ακόλουθο (τριγωνικό) ιστόγραμμα: k0124567891011121314153 0012030403020100 3 16 000000000 3 16 4 16 2 16 2 16 1 16 1 16 H (k) p (k) J J

255 255 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (4/7) Δημιουργία Ιστογράμματος:

256 256 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (5/7) Πιο κάτω είναι οι συσσωρευμένες (αθροιστικές) πιθανότητες που συνδέονται μαζί του: J 00 n0124567891011121314153 16 16 15 16 13 16 10 16 1 16 6 16 3 16 1 16 3 16 6 16 10 16 13 16 15 16 16 16 P (n)

257 257 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (6/7) J 1 Προσεκτική ορατή παρατήρηση της J 1 μας οδηγεί στο φτιάξιμο της νέας εικόνας: J J = 44810 6 86 124 6 10 814

258 258 Παράδειγμα Αλλαγή Μορφής Ιστογράμματος (7/7) Το νέο Ιστόγραμμα είναι: H (k) J k0124567891011121314153 0003030304020100

259 259 Ταύτιση Ιστογράμματος (1/2)  Μια ειδική περίπτωση της αλλαγής μορφής ιστογράμματος. Ι I´  Διαφορά: το ιστόγραμμα της αρχικής εικόνας Ι ταυτίζεται με το ιστόγραμμα μιας άλλης εικόνας I´ I´  Αλλιώς η διαδικασία είναι η ίδια, όταν οι συσσωρευμένες πιθανότητες υπολογιστούν για την μοντελοποιημένη εικόνα I´

260 260 Ταύτιση Ιστογράμματος (2/2) Χρήσιμη εφαρμογή: Σύγκριση όμοιων εικόνων της ίδιας σκηνής που πάρθηκε κάτω από διαφορετικές συνθήκες (π.χ. φωτός, ώρα της ημέρας, κλπ). AOD Προεκτείνεται η έννοια της ισοστάθμισης AOD που περιγράψαμε πιο πριν.

261 261 Βασικές Αλγεβρικές Λειτουργίες Εικόνας (1/3)  Οι αλγεβρικές λειτουργίες εικόνας (μεταξύ εικόνων) είναι κάπως απλές. N x NI 1 I 2  Θεωρούμε ότι έχουμε δυο N x N εικόνες I 1 και I 2. Οι τέσσερις βασικές αλγεβρικές λειτουργίες (όπως αυτές της υπολογιστικής σας) είναι:

262 262 Βασικές Αλγεβρικές Λειτουργίες Εικόνας (2/3)  Σημειακή Πρόσθεση Πινάκων J = I 1 + I 2 J = I 1 + I 2 if J(i, j) = I 1 (i, j) + I 2 (i, j) if J(i, j) = I 1 (i, j) + I 2 (i, j) for 0 ≤ i, j ≤ N-1 for 0 ≤ i, j ≤ N-1  Σημειακή Αφαίρεση πινάκων J = I 1 – I 2 if J(i, j) = I 1 (i, j) – I 2 (i, j) for 0 ≤ i, j ≤ N-1 for 0 ≤ i, j ≤ N-1

263 263 Βασικές Αλγεβρικές Λειτουργίες Εικόνας (3/3)  Σημειακός Πολλαπλασιασμός Πινάκων J = I 1 Ä I 2 J = I 1 Ä I 2 if J(i, j) = I 1 (i, j) x I 2 (i, j) for 0 ≤ i, j ≤ N-1  Σημειακή Διαίρεση Πινάκων J = I 1 D I 2 J = I 1 D I 2 if J(i, j) = I 1 (i, j) / I 2 (i, j) for 0 ≤ i, j ≤ N-1 * Ειδική σήμανση για σημείο προς σημείο (σημειακό) πολλαπλασιασμό και διαίρεση πινάκων αφού υπάρχει και άλλος ορισμός για πολλαπλασιασμό πινάκων. * Οι λειτουργίες Ä και D είναι πολύ χρήσιμες όταν επεξεργαζόμαστε πίνακες μετασχηματισμών Fourier.

264 264 Εφαρμογές Των Αλγεβρικών Λειτουργιών Παρ ’ οτι απλές, οι αλγεβρικές λειτουργίες αποτελούν την σπονδυλική στήλη για την ψηφιακή επεξεργασία εικόνων. Θα εξετάσουμε δυο απλές αλλά σημαντικές εφαρμογές αλγεβρικών λειτουργιών σε εικόνες:  Μέσος όρος πλαισίου για μείωση θορύβου  Εντοπισμός κίνησης

265 265 Μέσος Όρος Πλαισίου για Μείωση Θορύβου (1/3) J Μια εικόνα J συχνά είναι ‘ μολυσμένη ’ με αθροιστικό θόρυβο:  Διασκόρπιση επιφάνειας ακτινοβολίας  Θόρυβος στην κάμερα  Θερμικός θόρυβος στα υπολογιστικά κυκλώματα  Θόρυβος καναλιών επικοινωνίας

266 266 Μέσος Όρος Πλαισίου για Μείωση Θορύβου (2/3) Μπορούμε να κάνουμε μοντέλα για τέτοιες εικόνες με θόρυβο σαν το άθροισμα μιας πρωτότυπης, ‘ αμόλυντης ’ ΙΝ εικόνας Ι και μιας εικόνας θορύβου Ν J = I + N J = I + N N(i, j)N όπου τα στοιχεία N(i, j) του N είναι τυχαίες μεταβλητές. Δεν θα εξετάσουμε τους μαθηματικούς ορισμούς των τυχαίων μεταβλητών (ακόμα).

267 267 Μέσος Όρος Πλαισίου για Μείωση Θορύβου (3/3) Απλώς θα θεωρήσουμε ότι ο θόρυβος έχει μηδενική μεσαία τιμή (εργοδική), που σημαίνει ότι το δείγμα Μ μεσαίου Μ πινάκων θορύβου τείνει προς το μηδέν όταν το Μ Μ μεγαλώνει [ N 1 + · · · + N M ] ≈ 0 (matrix of zeros) Υπολογίζοντας τον μέσο όρο πολλών δειγμάτων μηδενικού-μέσου όρου δίνει μια τιμή κοντά στο μηδέν. Θα ορίσουμε το μηδενικό μέσο όρο πιο προσεκτικά αργότερα.

268 268 Υπολογισμός του Μέσου Όρου Πλαισίου για Μείωση Θορύβου (1/3) ΜJ 1,..., J M Θεωρούμε ότι παίρνουμε Μ εικόνες J 1,..., J M της ίδιας σκηνής:  Σε μια γρήγορη ακολουθία, χωρίς να υπάρχει κίνηση μεταξύ πλαισίων  Ή να μην υπάρχει καθόλου κίνηση. Ωστόσο, τα πλαίσια είναι θορυβώδη: for i = 1,..., M.

269 269 Υπολογισμός του Μέσου Όρου Πλαισίου για Μείωση Θορύβου (2/3) Θεωρούμε ότι παίρνουμε τον μέσο όρο των πλαισίων: I 1 = I 2 = · · · = I M = I Ωστόσο αφού I 1 = I 2 = · · · = I M = I, τότε και από πριν Έτσι περιμένουμε ότι J ≈ I + 0 ≈ I M (αν από αρκετά πλαίσια (M) παρθεί ο μέσος όρος)

270 270 Υπολογισμός του Μέσου Όρου Πλαισίου για Μείωση Θορύβου (3/3)  Η επεξεργασία εικόνας ενδιαφέρεται κυρίως για την διόρθωση η καλυτέρευση των εικόνων του προγραμματικού κόσμου.  Τα γραφικά υπολογιστών ενδιαφέρονται κυρίως για την δημιουργία εικόνων κάποιου μη- πραγματικού κόσμου.

271 271 Εντοπισμός Κίνησης (1/2) Συχνά είναι ενδιαφέρον να εντοπίσουμε κίνηση αντικειμένων μεταξύ πλαισίων. Εφαρμογές:  Συμπίεση βίντεο  Αναγνώριση στόχου και παρακολούθησης  Κάμερες ασφάλειας  Επίβλεψη  Αυτόματος έλεγχος κλπ.

272 272 Εντοπισμός Κίνησης (2/2) Πιο κάτω δίδεται μια απλή προσέγγιση: I 1 I 2 Ορίζουμε I 1, I 2 ως δυο διαδοχικά πλαίσια που πάρθηκαν σε πολύ σύντομο χρόνο, π.χ. από μια βίντεο κάμερα. J = |I 1 – I 2 | Από την εικόνα απόλυτης διαφοράς J = |I 1 – I 2 | ε εφαρμόζουμε τέντωμα αντίθεσης πλήρους κλίμακας J στην J το οποίο έχει ως αποτέλεσμα ένα πιο δραματικό οπτικό αποτέλεσμα.

273 273 Γεωμετρικές Λειτουργίες Εικόνας Οι γεωμετρικές λειτουργίες εικόνας είναι κάπως πιο περίπλοκες από τις αλγεβρικές λειτουργίες, και χρησιμοποιούνται λιγότερο (στην επεξεργασία εικόνων). Πολλές από τις ιδέες επίσης συμπίπτουν πολύ με σημαντικά στοιχεία των γραφικών υπολογιστών. Έτσι θα ξοδέψουμε λίγο χρόνο σε αυτά.

274 274 Βασικές Γεωμετρικές Λειτουργίες Εικόνας  Οι γεωμετρικές λειτουργίες εικόνας είναι αντίθετες των λειτουργιών απλού στίγματος: αλλάζουν την τοποθεσία των στιγμάτων αλλά όχι την τιμή τους.  Μια γεωμετρική λειτουργία γενικά χρειάζεται δυο βήματα:

275 275 Βασικές Γεωμετρικές Λειτουργίες Εικόνας  Μια ταύτιση χώρου των συντεταγμένων της εικόνας μας δίνει μια νέα συνάρτηση εικόνας J: J(i, j) = I(i´, j´ ) = I[a(i, j), b(i, j) Οι συντεταγμένες a(i, j) and b(i, j) δεν είναι γενικά ή Οι συντεταγμένες a(i, j) and b(i, j) δεν είναι γενικά ή συνήθως ακέραιοι! συνήθως ακέραιοι! Για παράδειγμα: a(i, j) = i/3.5, b(i, j) = j/4.5 Για παράδειγμα: a(i, j) = i/3.5, b(i, j) = j/4.5 J(i, j) = I(i/3.5, j/4.5), Τότε J(i, j) = I(i/3.5, j/4.5), το οποίο έχει απροσδιόριστες συντεταγμένες ! Έτσι συνεπάγεται η ανάγκη δεύτερης λειτουργίας:

276 276 Βασικές Γεωμετρικές Λειτουργίες Εικόνας a(i, j) b(i, j)J  Πλαστογραφούμε τις μη-ακραίες συντεταγμένες a(i, j) και b(i, j) σε ακέραιες τιμές, έτσι ώστε το J να μπορεί να παραστεί σε μορφή σειρών-στηλών (πίνακα)

277 277 Παρεμβολή Πλησιέστερου Γείτονα Με απλή σκέψη: Οι γεωμετρικά μετασχηματισμένες συντεταγμένες ταυτίζονται στις πλησιέστερες ακέραιες συντεταγμένες: J(i, j) = I{INT[a(i, j)+0.5], INT[b(i, j)+0.5]} J(i, j) = I{INT[a(i, j)+0.5], INT[b(i, j)+0.5]} Σοβαρό μειονέκτημα: Ξαφνικές αλλαγές της φωτεινότητας έχουν σαν αποτέλεσμα τις σπασμένές ακμές.

278 278 Προειδοποίηση Για κάποια συντεταγμένη (i, j) είτε INT[a(i, j)+0.5] < 0INT[b(i, j)+0.5] < 0 INT[a(i, j)+0.5] < 0 ή INT[b(i, j)+0.5] < 0 είτε INT[a(i, j)+0.5] > N-1INT[b(i, j)+0.5] > N-1 INT[a(i, j)+0.5] > N-1 ή INT[b(i, j)+0.5] > N-1 J(i, j) = I{INT[a(i, j)+0.5], INT[b(i, j)+0.5]} τότε J(i, j) = I{INT[a(i, j)+0.5], INT[b(i, j)+0.5]} δεν μπορεί να προσδιοριστεί. J(i, j) = 0 Συνήθως θέτουμε το J(i, j) = 0 για αυτές τις τιμές.

279 279 Διγραμμική Παρεμβολή  Δημιουργία μιας πιο ομαλής παρεμβολής από την προσέγγιση του πλησιέστερου γείτονα. I(i 0, j 0 ), I(i 1, j 1 ), I(i 2, j 2 ),I(i 3, j 3 ),J(i, j)  Δίδονται τέσσερις συντεταγμένες I(i 0, j 0 ), I(i 1, j 1 ), I(i 2, j 2 ), και I(i 3, j 3 ), η νέα εικόνα J(i, j) υπολογίζεται ως ακολούθως: J(i, j) = A 0 + A 1 · i + A 2 · j + A 3 · i · j A0, A1, A2A3 όπου τα διγραμμικά βάρη A0, A1, A2, και A3 είναι το αποτέλεσμα της λύσης της πιο κάτω εξίσωσης:

280 280 Ένας γραμμικός συνδυασμός των τεσσάρων πλησιέστερων τιμών. Το πιο καλό ταίριασμα επιπέδου στις τέσσερις πλησιέστερες τιμές. A 0 A 1 A 2 A 3 = 1 1 1 1 i i i i j 0 j 1 j 2 j 3 i 0 i 1 i 2 i 3 j 0 j 1 j 2 j 3 0 1 2 3 I(i, j ) 00 1 1 2 2 3 3 Διγραμμική Παρεμβολή

281 281 Οι Βασικοί Γεωμετρικοί Μετασχηματισμοί  Οι πιο βασικοί γεωμετρικοί μετασχηματισμοί είναι: - Translation (Μετατόπιση) - Rotation (Περιστροφή) - Zooming (Μεγέθυνση)

282 282 Μετατόπιση  Η μετατόπιση είναι η πιο απλή γεωμετρική λειτουργία και δεν χρειάζεται παρεμβολή. Ορίζουμε a(i, j) = i - i0, b(i, j) = j - j0 a(i, j) = i - i0, b(i, j) = j - j0 (i0, j0) όπου (i0, j0) είναι σταθερές. J(i, j) = I(i - i0, j - j0) Σε αυτή την περίπτωση J(i, j) = I(i - i0, j - j0) μια μετακίνηση ή μετατόπιση της εικόνας με μέγεθος i0 στην κατακόρυφη (σειρά) διεύθυνση και μεγέθους j0 στην οριζόντια διεύθυνση.

283 283 Περιστροφή  Η περιστροφή της εικόνας με την γωνία q σε σχέση με τον αξονα-x επιτυγχάνετε από τον ακόλουθο μετασχηματισμό: a(i, j) = i cos( q ) - j sin( q ) b(i, j) = i sin( q ) + j cos( q )

284 284  Απλές περιπτώσεις: q = 90° : [a(i, j), b(i, j)] = (-j, i) q = 180° : [a(i, j), b(i, j)] = (-i, -j) q = 180° : [a(i, j), b(i, j)] = (-i, -j) q = -90° : [a(i, j), b(i, j)] = (j, -i) q = -90° : [a(i, j), b(i, j)] = (j, -i)  Οι περιστρεφόμενες εικόνες συνήθως χρειάζονται μετατόπιση μετέπειτα για να πάρουν τιμές συντεταγμένων στο επιθυμητό πεδίο. Περιστροφή

285 285 Μεγέθυνση  Η μεγέθυνση μεγαλώνει μια εικόνα με την συνάρτηση ταύτισης a(i, j) = i / cb(i, j) = j / d a(i, j) = i / c και b(i, j) = j / d c ≥ 1d ≥ 1 όπου c ≥ 1 και d ≥ 1.

286 286  Για μεγάλη μεγέθυνση, η μεγεθυσμένη εικόνα θα φαίνεται ‘ θολή ’ αν χρησιμοποιηθεί απλή παρεμβολή πλησιέστερου γείτονα. Η διγραμμική παρεμβολή δουλεύει καλύτερα. original Αυτοί είναι πολύ απλοί μετασχηματισμοί. Ένα παράδειγμα πιο έξυπνου γεωμετρικού μετασχηματισμού ! 2x zoomed Μεγέθυνση

287 287 Κεφάλαιο 4 ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΠΛ 445 - Ψηφιακή Επεξεργασία Εικόνας

288 288 Περιεχόμενα o Ημιτονικές εικόνες o Διακριτός Μετασχηματισμός Fourier o Σημασία των Συχνοτήτων Εικόνας o Θεώρημα Δειγματοληψίας

289 289 Ημιτονικές Εικόνες (1/5)  Θα κάνουμε συχνή αναφορά σε αυτό το κεφάλαιο για το περιεχόμενο συχνοτήτων μιας εικόνας.  Πρώτα θα εξετάσουμε τις εικόνες οι οποίες έχουν το απλούστερο περιεχόμενο συχνοτήτων.  Μια ψηφιακή ημιτονική εικόνα Ι1 είναι μια εικόνα η οποία έχει στοιχεία  Μια ψηφιακή συνημιτονική εικόνα Ι2 είναι μια εικόνα η οποία έχει στοιχεία

290 290 Ημιτονικές Εικόνες (2/5)  Τα u και v αποτελούν τις ακέραιες συχνότητες στην i και j κατεύθυνση και μετρώνται σε κύκλους ανά εικόνα (cycles per image).  Η ακτινωτή συχνότητα Ω μιας εικόνας (το πόσο γρήγορα η εικόνα ταλαντεύεται στην κατεύθυνση της διάδοσης) ορίζεται ως:  Η γωνία θ του κύματος (ως προς τον άξονα i) ορίζεται ως:

291 291 Ημιτονικές Εικόνες (3/5)  Παράδειγμα: Έστω ότι Ν=16 και v=0 (κύκλοι ανά εικόνα) για μια συνημιτονική εικόνα Ι. Επομένως ισχύει ότι Αυτό είναι ένα κύμα συνημίτονου το οποίο διαδίδεται μόνο στην κατεύθυνση i (Όλες οι γραμμές είναι οι ίδιες) με συχνότητα u. Στην επόμενη διαφάνεια δείχνουμε τις τιμές της συνάρτησης Ι(i) για κάποια συγκεκριμένα u. Το i- οστό εικονοστοιχείο κάθε γραμμής της εικόνας μας θα έχει τιμή Ι(i).

292 292 Ημιτονικές Εικόνες (4/5) Η συνάρτηση για διάφορες τιμές του u:

293 293 Ημιτονικές Εικόνες (5/5)  Παρατηρήστε ότι Αυτό σημαίνει ότι το κύμα με την μεγαλύτερη συχνότητα λαμβάνει χώρα όταν και το N είναι άρτιος στην συγκεκριμένη περίπτωση. Αυτό θα είναι σημαντικό αργότερα.

294 294 Μιγαδικές εκθετικές εικόνες  Θα χρησιμοποιήσουμε μιγαδικές εκθετικές συναρτήσεις για να ορίσουμε αργότερα τον μετασχηματισμό Fourier μιας ψηφιακής εικόνας.  Ως εκ τούτου ορίζουμε την δυσδιάστατη μιγαδική εκθετική συνάρτηση ως ακολούθως:  Το είναι ο γνήσιος φανταστικός αριθμός όπου  Η μιγαδική εκθετική συνάρτηση δίνει την δυνατότητα μιας εύκολης και βολικής αναπαράστασης και χειρισμού των συχνοτήτων, όπως θα δούμε παρακάτω.

295 295 Μιγαδικοί Αριθμοί (1/3)  Ένας μιγαδικός αριθμός Χ έχει την μορφή: όπου το Α αποτελεί το πραγματικό μέρος και το αποτελεί το φανταστικό μέρος του αριθμού.  Ένας μιγαδικός αριθμός Χ χαρακτηρίζεται από το μέγεθος ( ) και την φάση του ( ) όπου

296 296 Μιγαδικοί Αριθμοί (2/3)  Ένας μιγαδικός αριθμός Χ μπορεί να αναπαρασταθεί συναρτήσει του μεγέθους και της φάσης του ως ακολούθως:  Ο μιγαδικός συζυγής ή απλά συζυγής του Χ ορίζεται ως ακολούθως:

297 297 Μιγαδικοί Αριθμοί (3/3)  Ισχύει η εξής ιδιότητα μεταξύ ενός μιγαδικού αριθμού Χ και του συζυγούς του Χ* :

298 298 Ιδιότητες Της Μιγαδικής Εκθετικής Εικόνας (1/3)  Θα χρησιμοποιήσουμε τον συμβολισμό για την μιγαδική εκθετική εικόνα, όπου το Ν αποτελεί το μέγεθος της εικόνας.  Άρα βάσει του συμβολισμού μας έπεται ότι

299 299 Ιδιότητες Της Μιγαδικής Εκθετικής Εικόνας (2/3)  H ταυτότητα Euler έχει ως ακολούθως:  Επομένως αφού έπεται ότι

300 300 Ιδιότητες Της Μιγαδικής Εκθετικής Εικόνας (3/3)  Επιπρόσθετα ισχύουν οι ακόλουθες ισότητες:

301 301 Μέγεθος & Φάση Της Μιγαδικής Εκθετικής Εικόνας  Το μέγεθος και η φάση της μιγαδικής εκθετικής εικόνας αντίστοιχα είναι τα ακόλουθα:

302 302 Μιγαδικές Εκθετικές Εικόνες - Σχόλια  Η ανάπτυξη του μετασχηματισμού Fourier (πεδίο συχνοτήτων) χωρίς την βοήθεια των μιγαδικών αριθμών είναι δυνατή. Όμως τα μαθηματικά τα οποία θα χρησιμοποιηθούν θα είναι περισσότερα.  Η χρήση του για αναπαράσταση μιας συνιστώσας συχνότητας η οποία ταλαντώνεται σε u κύκλους ανά μήκους εικόνας και σε v κύκλους ανά μήκους εικόνα στις κατευθύνσεις i και j αντίστοιχα, απλοποιεί σε ένα ικανοποιητικό βαθμό τα πράγματα.  Επομένως είναι πολύ βοηθητικό να θεωρούμε το ως αναπαράσταση της κατεύθυνσης και συχνότητας της ταλάντωσης.

303 303 Τιμές Της Μιγαδικής Εκθετικής Συνάρτησης (1/4)  Η μιγαδική εκθετική συνάρτηση αποτελεί μια αναπαράσταση της συχνότητας συναρτήσει του εκθέτη ui.  H ελάχιστη φυσική συχνότητα, λαμβάνει χώρα περιοδικά όταν u = kN όπου τα i, k είναι ακέραιοι αριθμοί. Συγκεκριμένα ισχύει ότι

304 304 Τιμές Της Μιγαδικής Εκθετικής Συνάρτησης (2/4) Απόδειξη της προαναφερθείσας πρότασης:

305 305 Τιμές Της Μιγαδικής Εκθετικής Συνάρτησης (3/4)  H μέγιστη φυσική συχνότητα, λαμβάνει χώρα περιοδικά όταν u = kN + Ν/2 όπου τα i, k είναι ακέραιοι αριθμοί και το Ν είναι άρτιος. Συγκεκριμένα ισχύει ότι Ακολουθεί τη απόδειξη της παραπάνω πρότασης.

306 306 Τιμές Της Μιγαδικής Εκθετικής Συνάρτησης (4/4) Απόδειξη της προαναφερθείσας πρότασης:

307 307 Διακριτός Μετασχηματισμός Fourier (1/4)  Για τον Διακριτό Μετασχηματισμό Fourier συνήθως χρησιμοποιούμε την συντομογραφία DFT από τον αντίστοιχο αγγλικό όρο Discrete Fourier Transform.  O Διακριτός Μετασχηματισμός Fourier μας προσφέρει την δυνατότητα μετάβασης από το πεδίο χώρου μιας εικόνας (spatial domain) στο αντίστοιχο πεδίο συχνοτήτων της (frequency domain).  Αυτή η δυνατότητα είναι πολύ σημαντική. Όπως θα δούμε στο κεφάλαιο αυτό αλλά και σε επόμενα κεφάλαια, η επέμβαση στο πεδίο συχνοτήτων μιας εικόνας είναι ένας από τους σημαντικότερους τρόπους τροποποίησης και επεξεργασίας της.

308 308 Διακριτός Μετασχηματισμός Fourier (2/4)  Ο μαθηματικός τύπος για τον DFT είναι ο ακόλουθος: Προσοχή: Πρέπει να τονιστεί ότι τα (i, j) αποτελούν συντεταγμένες χώρου ενώ τα (u, v) αποτελούν συντεταγμένες συχνοτήτων οι οποίες εκφράζονται σε κύκλους ανά εικόνα.

309 309 Διακριτός Μετασχηματισμός Fourier (3/4)  Το αποτέλεσμα του DFT μιας εικόνας είναι ένας πίνακας διαστάσεων Ν x N (όπως η αρχική μας εικόνα). Επομένως  O Αντίστροφος Διακριτός Μετασχηματισμός Fourier (IDFT - Inverse DFT) μας βοηθά να ανακτήσουμε την αρχική μας εικόνα από το πεδίο συχνοτήτων της. Ο μαθηματικός του τύπος είναι ο ακόλουθος

310 310 Διακριτός Μετασχηματισμός Fourier (4/4) Αν έχω ένα πεπερασμένο αριθμό εικόνων Ι 1... Ι Μ τότε ισχύει η ακόλουθη ιδιότητα: Τα α 1... α Μ είναι πραγματικοί αριθμοί και DFT(I Κ ) = όπου 1  Κ  Μ. DFT[ α 1 Ι 1 +... + α Μ Ι Μ ] = α 1 DFT[ Ι 1 ] +... + α Μ DFT[ Ι Μ ]

311 311 Διακριτός Μετασχηματισμός Fourier - Σχόλια  Από τον τύπο του ΙDFT παρατηρούμε ότι μια εικόνα Ι δυνατόν να εκφραστεί ως ένα άθροισμα ενός πεπερασμένου αριθμού μιγαδικών εκθετικών εικόνων πολλαπλασιαζόμενων με κάποιο συντελεστή βάρους (weighted sum).  Για τον υπολογισμό του DFT μιας εικόνας, στις πλείστες περιπτώσεις, χρησιμοποιείται ο αλγόριθμος FFT (Fast Fourier Transform), ένας αποδοτικός αλγόριθμος και ένας από τους πλέον δημοφιλείς και χρησιμοποιούμενους αλγορίθμους !...

312 312 Διακριτός Μετασχηματισμός Fourier - Σχόλια  Το αποτέλεσμα του IDFT είναι μια μιγαδική εικόνα J όπου το φανταστικό μέρος του κάθε στοιχείου της εικόνας είναι της μορφής = 0. Επομένως θα πρέπει να απομονώσουμε το πραγματικό μέρος και μόνο αυτό να απεικονίσουμε.

313 313 Ιδιότητες του πίνακα DFT (1/3)  Μπορούμε να κατανοήσουμε τον πίνακα DFT καλύτερα μελετώντας μερικές ιδιότητες του.  Κάθε εικόνα Ι που μελετούμε, αποτελείται από πραγματικούς αριθμούς ή ακεραίους.  Ωστόσο, το DFT της είναι γενικά μιγαδικό.  To DFT μιας εικόνας μπορεί να γραφτεί σαν άθροισμα μιας πραγματικής και μιας φανταστικής εικόνας.

314 314 Ιδιότητες του πίνακα DFT (2/3)  Μπορεί να γραφτεί στην μορφή: όπου και

315 315 Ιδιότητες του πίνακα DFT (3/3) δηλαδή,  Τα πιο πάνω υπολογίστηκαν απ΄ευθείας από την αρχική εξίσωση DFT.  Έτσι η έχει μέγεθος και φάση.

316 316 Μέγεθος του DFT  Το μέγεθος του DFT είναι ένας πίνακας με στοιχεία: τα οποία είναι τα μεγέθη των μιγαδικών στοιχείων της

317 317 Φάση του DFT  Η φάση του DFT είναι ένας πίνακας με στοιχεία: τα οποία είναι η φάση των μιγαδικών στοιχείων της

318 318 DFT της εικόνας Ι  Έτσι … Μέγεθος Φάση

319 319 Συμμετρία (1/5)  Το DFT μιας εικόνας έχει συμμετρική συζυγία.  Απόδειξη Στην απόδειξη θα χρησιμοποιηθούν οι πιο κάτω ισότητες: 1. 2.

320 320 Συμμετρία (2/5)  Συνεχίζουμε με την απόδειξη …

321 321 Συμμετρία (3/5)  Αποδεικνύοντας το πιο πάνω συμπεραίνουμε ότι ο πίνακας DFT περιέχει πλεονασμό, δηλαδή έχουμε τις ίδιες πληροφορίες περισσότερες από μία φορές (συμμετρία).  Τετριμμένα ισχύει:

322 322 Συμμετρία (4/5)  Απεικόνιση της συμμετρίας του DFT (μέγεθος).  Συμμετρία και στις δύο κατευθύνσεις (u-κατεύθυνση και v-κατεύθυνση).  Οι μονάδες μέτρησης είναι cycles/image (κύκλοι/εικόνα).

323 323 Συμμετρία (5/5)  Οι ψηλότερες συχνότητες αναπαριστάνονται κοντά στο (u, v) = (N/2, N/2), δηλαδή στο κέντρο.

324 324 Περιοδικότητα του DFT (1/4)  Ορίζουμε τον πίνακα DFT ώστε να έχει πεπερασμένη προέκταση με διαστάσεις N x N.  Ωστόσο, αν οι συντελεστές επιτραπούν να πάρουν τιμές έξω από την κλίμακα 0 ≤ u, v ≤ N-1, βρίσκουμε ότι το DFT είναι περιοδικό και στην u- και στην v- κατεύθυνση, με περίοδο Ν

325 325 Περιοδικότητα του DFT (2/4)  Απόδειξη Στην απόδειξη θα χρησιμοποιηθεί η πιο κάτω ισότητα: 1.  Συνεχίζουμε με την απόδειξη …

326 326 Περιοδικότητα του DFT (3/4)  Αυτό ονομάζεται περιοδική προέκταση του DFT. Ορίζεται για όλες τις ακέραιες συχνότητες u,v.

327 327 Περιοδικότητα του DFT (4/4)  Περιοδική προέκταση του DFT.........

328 328 Περιοδική Προέκταση Της Εικόνας (1/4)  Εφαρμόζοντας την IDFT εξίσωση στο DFT μιας εικόνας Ι, θα πάρουμε την αρχική μας εικόνα Ι, έτσι και η I προεκτείνεται περιοδικά.  Απόδειξη Στην απόδειξη θα χρησιμοποιηθεί η πιο κάτω ισότητα: 1.

329 329 Περιοδική Προέκταση Της Εικόνας (2/4)  Συνεχίζουμε με την απόδειξη …

330 330 Περιοδική Προέκταση Της Εικόνας (3/4)  Κατά τη χρήση του DFT υπονοείται ότι η εικόνα Ι είναι ήδη περιοδική.  Αυτό θα είναι πολύ χρήσιμο όταν θα μελετήσουμε την συνέλιξη (κυκλική συνέλιξη).

331 331 Περιοδική Προέκταση Της Εικόνας (4/4)  Περιοδική προέκταση της εικόνας......... Εικόνα Ι

332 332 Παρουσίαση του DFT (1/6)  Συνήθως το DFT αναπαρίσταται με την κεντρική του συντεταγμένη (u, v) = (0, 0) στο κέντρο της εικόνας.  Με αυτό τον τρόπο, οι πληροφορίες που αφορούν χαμηλές συχνότητες (οι οποίες συνήθως είναι κυρίαρχες στην εικόνα) επικεντρώνονται στη μέση της οθόνης.

333 333 Παρουσίαση του DFT (2/6)  Αυτό μπορεί να επιτευχθεί στην πράξη με το να πάρουμε το DFT της εναλλασσόμενης εικόνας (για σκοπούς αναπαράστασης μόνο).  Παρατηρήστε ότι:  οπότε χρησιμοποιώντας τα πιο πάνω …

334 334 Παρουσίαση του DFT (3/6)

335 335 Παρουσίαση του DFT (4/6)  Μια απλή μετατόπιση του DFT στο μισό μήκος του και στις δυο κατευθύνσεις παρουσιάζεται πιο κάτω: Centered DFT

336 336 Παρουσίαση του DFT (5/6)  Επειδή το DFT είναι μιγαδικής μορφής, το μέγεθος και η φάση μπορούν να αναπαρασταθούν σαν ξεχωριστή εικόνα.  Για να αναπαρασταθεί το μέγεθος, συνήθως είναι καλύτερα να το συμπιέσουμε λογαριθμικά με την εξής εφαρμογή: πριν την αναπαράσταση, επειδή οπτικά οι χαμηλού μεγέθους συχνότητες θα είναι δυσδιάκριτες.

337 337 Παρουσίαση του DFT (6/6)  Μετά το λογάριθμο, είναι αναγκαίο να χρησιμοποιήσουμε γραμμική λειτουργία απλού στίγματος για να επεκτείνουμε την αντίθεση, επειδή οι τιμές του λογαρίθμου θα είναι πολύ μικρές.  ΠΑΡΑΔΕΙΓΜΑ DFT Ι = imread( ‘ exampleim.tif ’ ); F = fft2(I); F1 = log(1+abs(F)); imshow(I); figure, imshow(F1) I

338 338 Πίνακας Εκθετικών Μιγαδικών  Ορίζουμε ένα πίνακα των DFT εκθετικών μιγαδικών.  Αυτός είναι ένας συμμετρικός πίνακας.

339 339 Πίνακας Εκθετικών Μιγαδικών  Ο αντίστροφος πίνακας του είναι ο εξής συζυγής μιγαδικός:

340 340 Πίνακας Εκθετικών Μιγαδικών  Στην προηγούμενη εξίσωση, το στοιχείο καθορίζεται από τον εξής πίνακα: όπου

341 341 Μορφή γινομένου πινάκων των λειτουργιών DFT  Μπορούμε τώρα να ξαναγράψουμε τις DFT και IDFT εξισώσεις σαν γινόμενο πινάκων:  DFT:  IDFT:

342 342 Απόδειξη εξισώσεων γινομένου πινάκων των λειτουργιών DFT

343 343 Μορφή γινομένου πινάκων των λειτουργιών DFT  Δεν υπάρχει κανένα μυστήριο σχετικά με τη μορφή του πίνακα DFT – είναι απλά ένας εύκολος και βολικός τρόπος καταγραφής στοιχείων και αθροισμάτων υπό μορφή πολλαπλασιασμού πινάκων.  Θα μας είναι πολύ χρήσιμο αργότερα σαν συντόμευση όταν θα χρησιμοποιούμε το DFT εκτενώς.

344 344 Υπολογισμός του DFT  Οι γρήγοροι αλγόριθμοι για το DFT αναφέρονται συλλογικά σαν αλγόριθμοι γρήγορων μετασχηματισμών Fourier (FFT – Fast Fourier Transform).  Δεν θα ερευνήσουμε τη σχεδίασή τους, αφού είναι διαθέσιμοι στα περισσότερα προγράμματα μαθηματικών βιβλιοθηκών.

345 345 Υπολογισμός του DFT  Συνήθως ένας αλγόριθμος αρκεί για τον υπολογισμό και του DFT και του IDFT, αφού η δομή των μετασχηματισμών είναι παρόμοια.  Στις εξισώσεις πινάκων του DFT – IDFT, θυμηθείτε ότι διαφέρουν μόνο στη χρήση του W αντί του.  Έτσι ένα πρόγραμμα χρειάζεται να γνωρίζει μόνο ένα ψηφίο ελέγχου (flag bit), το οποίο θα δεικνύει κατά πόσο οι μιγαδικές τιμές θα πρέπει να είναι συζυγείς ή όχι.

346 346 Το Νόημα Της Συχνότητας Εικόνας  Μερικές φορές είναι εύκολο να χάσουμε την έννοια του DFT και του περιεχομένου συχνότητας της εικόνας σε όλα αυτά τα μαθηματικά.  Το DFT είναι ακριβώς αυτό – μια περιγραφή της περιεχόμενης συχνότητας.  Κοιτάζοντας το DFT ή το φάσμα μιας εικόνας (ειδικά το μέγεθός της), μπορούμε να προσδιορίσουμε πολλά στοιχεία σχετικά με την εικόνα.

347 347 Ποιοτικές ιδιότητες του DFT  Μπορούμε να θεωρήσουμε το DFT σαν μια εικόνα περιεχομένου συχνότητας.  Οι φωτεινές περιοχές στην DFT “εικόνα” αντιστοιχούν στις συχνότητες οι οποίες έχουν μεγάλο μέγεθος στην πραγματική εικόνα.  Είναι διαισθητικά λογικό να σκεφτούμε την περιεχόμενη συχνότητα της εικόνας σε συσχέτιση με την κοκκυκότητα (κατανομή της ακτινωτής συχνότητας) και τον προσανατολισμό της.

348 348 Granularity  Μεγάλες τιμές κοντά στο κέντρο του DFT αντιστοιχούν σε μεγάλες ομαλές περιοχές της εικόνας ή σε δυνατό φόντο.  Από τη στιγμή που οι εικόνες είναι θετικές (υπονοώντας μια προσθετική μετατόπιση), κάθε εικόνα έχει μια μεγάλη κορυφή στο (u, v) = (0, 0).

349 349 Χρήση μασκών στο DFT  Θεωρούμε ότι ορίζουμε διαφορετικές εικόνες με τιμές 0 και 1 (δυαδικές εικόνες).  Σημείωση: Οι μάσκες πρέπει να εφαρμόζονται πάνω σε shifted εικόνες. Low passMid passHigh pass

350 350 Χρήση μασκών στο DFT  Η χρησιμοποίηση μασκών στο DFT παράγει IDFT εικόνες με μόνο χαμηλές, μέσες ή υψηλές εναπομείναντες συχνότητες.  Φυσικά η πρόσθεση των αποτελεσμάτων μας επαναφέρει στην αρχική εικόνα.  Προσανατολισμός (Directionality): Αν το DFT είναι φωτεινότερο κατά μήκος κάποιας κατεύθυνσης, η εικόνα περιλαμβάνει ψηλά στοιχεία προσανατολισμού προς αυτή την κατεύθυνση.

351 351 Χρησιμοποιώντας μάσκες στο DFT  Ορίζουμε μερικές εικόνες προσανατολισμού μηδενός – ενός:

352 352 Χρησιμοποιώντας μάσκες στο DFT  Η χρησιμοποίηση μασκών θα παράξει ΙDFT εικόνες μόνο με απομεινάρια υψηλών προσανατολισμένων συχνοτήτων( διαφάνειες).  Πάλι αν προσθέσουμε τα αποτελέσματα θα πάρουμε πίσω την αρχική εικόνα.

353 353 Εικόνες Στενού Φάσματος  Είναι επίσης πιθανόν να παράξουμε μια εικόνα η οποία είναι υψηλά προσανατολισμένη.  Αυτή η μάσκα δημιουργήθηκε με πολλαπλασιασμό( σημείου- προς – σημείο) της Μάσκας συχνοτήτων με μια από τις μάσκες προσανατολισμού.

354 354 Θεώρημα Δειγματοληψίας (1/3)  Είναι αξιοσημείωτη η εξέταση της συσχέτισης μεταξύ του DFT (φάσμα ψηφιακού σήματος) και του μετασχηματισμού Fourier της αρχικής, χωρίς – δειγματοληψία εικόνας.

355 355 Θεώρημα Δειγματοληψίας (2/3)  Η εικόνα Ιc(x,y) έχει Συνεχές Μετασχηματισμό Fourier (CFT) Ιc(wx, wy) όπου (x,y)δηλώνουν τις συχνότητες πραγματικού χώρου και (ωx,ωy) δηλώνουν συνεχείς συχνότητες. ~ ∞ ∞ - 2π √-1 ( xω x + yω y ) Ic(ω x, ω y ) = ∫ ∫ Ic(x, y) ℮ dω x dω y -∞ -∞ ∞ ∞ ~ 2 π √-1 (xω x + yω y ) Ic(x,y)= 1/ (2π) 2 ∫ ∫ Ic(ωx,ωy) ℮ dω x dω y -∞ -∞

356 356 Θεώρημα Δειγματοληψίας (3/3)  Αυτό δεν πρέπει να είναι μεγάλη έκπληξη αφού Τα ολοκληρώματα είναι όρια αθροισμάτων : Ιc(x,y) μπορεί να εκφραστεί σαν όρια αθροισμάτων εκθετικών μιγαδικών. Σημαντικό: To CFT δεν είναι περιοδικό.Αυτή η ιδιότητα είναι παράξενη σε ψηφιακές εικόνες.Το CFT ορίζεται για όλες τις συχνότητες. Το CFT

357 357 Συσχέτιση του CFT με το DFT (1/5)  Ας θεωρήσουμε ότι Ιc(x,y) έχει περιορισμένο φάσμα,που σημαίνει ότι το CFT της είναι μηδέν έξω από ένα πεδίο συχνοτήτων: Ιc(ω x, ω y ) = 0 for |ω x | ≥ Wx, |ω y | ≥ Wy Η συνθήκη ικανοποιήτε αφού το υλικό (hardware) το εφαρμόζει με αναλογικό φιλτράρισμα (π.χ. οπτικά). Πριν την δειγματοληψία.

358 358 Συσχέτιση του CFT και DFT (2/5)  Κάθε πραγματική εικόνα είναι σημαντικά περιορισμένη (π.χ., το CFT της γίνεται μηδενικό για μεγάλα ω x, ω y).  Άν Ι(i,j) είναι ένα δείγμα χώρου Χ και Υ στην x- και y-κατεύθυνση (έτσι η συχνότητα δειγματοληψίας 1 και 1 ): Χ Υ Ι(i,j) = Ic(iX,jY) για 0 ≤ i, j ≤ N-1

359 359 Συσχέτιση του CFT και DFT (3/5)  Tότε το DFT και το CFT συσχετίζονται από: ~ 1 ∞ ∞ ~ n m I(u,v)= ∑ ∑ I c (ω x -,ω y - ) | X Y n=- ∞ m=-∞ X Y u v ω x =, ω y = N X N Y

360 360 Συσχέτιση του CFT και DFT (4/5) 1 ∞ ∞ ~ u n v m = ∑ ∑ Ic ( -, - ) X Y n=- ∞ n=- ∞ N X X NY Y Αυτό είναι το άθροισμα μετατοπισμένης εκδοχής του CFT.Είναι περιοδικό στη u και v κατεύθυνση με περίοδο 1/Χ και 1/Υ.

361 361 Συσχέτιση του CFT και DFT (5/5) Αυτό φαίνεται στο πιο κάτω σχήμα:

362 362 Σχόλια (1/2)  Υπάρχει ένας μαθηματικός λόγος γιατί οι εικόνες γιατί οι εικόνες πρέπει να δειγματοληπτούνται αρκετά πυκνά. Αν αυτός ο μαθηματικός όρος παραβιαστεί,τότε η παραμόρφωση των εικόνων θα είναι ορατή.  Επίσης σημαντικό: αν το θεώρημα δειγματοληψίας ικανοποιηθεί,μπορεί να θεωρηθεί ώς περιοδικό αντίγραφο του CFT. Έτσι ο ΝxN DFT πίνακας Ι θα περιλαμβάνει στοιχεία που αποτελούνται από δείγματα του CFT

363 363 Σχόλια (2/2) ~ 1 ~ u v I(u,v) = Ic(, ) for 0≤ |u|,|v|≤N/2-1 ΧΥ ΝΧ ΝΥ (Σημειώστε: αφού το CFT δεν είναι περιοδικό, ορίζουμε το DFT σαν δείγματα του CFT με την αρχή (0,0) στο κέντρο).  Δεν υπάρχει λόγος για να μην μπορούμε να θεωρήσουμε ότι Χ=Υ=1.

364 364 Σημαντικές 2-Δ Συναρτήσεις και τα DFT (1/2)  Αξίζει να εξετάσουμε τα DFT s μερικών προσδιορισμών εικόνων.Ωστόσο, αυτό είναι δύσκολο να το κάνουμε με το χέρι στις περισσότερες περιπτώσεις.Έτσι θα δώσουμε μερικά απλά παραδείγματα. Μετά θα δείξουμε μερικά άλλα ως CFT ζεύγη μετασχηματισμού.  Constant image : Θέτουμε Ι(i,j) = c for 0≤ i,j≤ N-1 ~ Τότε I(u,v)=N ². c.δ(u,v) δ(u,v)= { 1, u=v=0; else 0.

365 365 Σημαντικές 2-Δ Συναρτήσεις και τα DFT (2/2)  2-D Unit Pulse Image (2-Δ Unit Pulse εικόνα)  Θέτουμε Ι( i,j) = c. δ(i,j) (I(0,0)=c, else I(i,j)=0). ~ N-1 N-1 (ui+ vj) Tότε Ι(u,v) =   c. δ(i,j) W N 0 i=0 j=0 =c.W =c (constant DFT). Cosine Wave Image (Εικόνα Συνημιτόνου) Θέτουμε Ι(i,j)=d. cos[2π/Ν (bi + cj)]

366 366 Eικόνα Συνημιτόνου  Με βάση τα προηγούμενα υπολογίζουμε το DFT : N-1 N-1 (bi + cj) -(bi+cj) (ui+vj) Ι(u,v)=(d/2)   [W N + W N ] W N i=0 j=0 Προκύπτει : Ι(u,v)=(dN ² )[ δ(u+b, v+c) +δ(u-b, v-c)] Έτσι το DFT δεν έχει μηδενική τιμή μόνο στις συχνότητες του κύματος συνημιτόνου. Με το ίδιο σκεπτικό υπολογίζω το DFT του ημιτόνου. DFT{d.sin[2π/Ν(bi+cj)]} = (dN ² )  -1[δ(u-b,v-c) - δ(u+b,v+c)].

367 367 Παραδείγματα Συνεχή Μετασχηματισμού Fourier (I / II)  Και τώρα μερικά CFT ζεύγη τα οποία είναι δύσκολο να εκφραστούν ή παίρνουν πολύ χρόνο για να γίνουν με το χέρι σαν ζεύγη DFT. Συνάρτηση Ορθογωνίου · Θέτουμε I c (x, y) = c rect(x/A x ) rect(y/A y ) Δηλαδή: I c (x, y) = { c; |x| ≤ A x /2 και |y| ≤ A y /2 { 0 ; αλλού Αφού rect(x) = { 1 ; |x| ≤ ½ ~ { 0 ; αλλού Τότε: Ιc (w x, w y ) = c Ax Ay sinc(w x Ax) sinc(w y Ay) όπου sinc(x)=sin(π x)/(π x)

368 368 Παραδείγματα Συνεχή Μετασχηματισμού Fourier (II / II) Συνάρτηση Sinc I c (x, y) = c· sinc (ax) sinc (by) όπου a, b ≥ 0 I c (w x, w y ) = {c; |w x | ≤ a και |w y | ≤ b {0; αλλού.  Συνάρτηση Gaussian I c (x, y )= exp [ -(x² + y²)/s²] Τότε Ι c (wx, wy)= exp [ -2π ²s²( ω x +ω y ) ] Το οποιο ειναι επισης Gaussian.

369 369 Τέλος Κεφαλαίου 4 ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας

370 370 ΚΕΦΑΛΑΙΟ 5 Γραμμικό Φιλτράρισμα Εικόνων ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας

371 371 Κυκλική Συνέλιξη (1/2)  Έχουμε παρατηρήσει ότι με την μετατόπιση του DFT μιας εικόνας αλλάζει η εμφάνιση της.  Για παράδειγμα, πολλαπλασιάζοντας το DFT με μια μάσκα μηδενός: Μετατρέπει με σιγουριά την δομή των πεδίων φωτεινότητας στην εικόνα.

372 372 Κυκλική Συνέλιξη (2/2)  Ποιο είναι το αποτέλεσμα αν δυο τυχαία DFTs πολλαπλασιαστούν μεταξύ τους (σημείο προς σημείο);  Ποια είναι η φύση της εικόνας που παράγεται από τις ακόλουθες λειτουργίες;

373 373 Πολλαπλασιασμός/Διαίρεση DFTs (1/5) Αποφέυγετε την διαίρεση με το μηδέν.

374 374 Πολλαπλασιασμός DFTs (2/5)  Εφαρμόζουμε τον αντίστροφο μετασχηματισμό DFT στο γινόμενο των DFTs

375 375 Πολλαπλασιασμός DFTs (3/5)

376 376 Πολλαπλασιασμός DFTs (4/5)  Ο εσωτερικός όρος είναι: Αντικαθιστώντας παίρνουμε:

377 377 Πολλαπλασιασμός DFTs (5/5)

378 378 Κυκλική Συνέλιξη (1/2)  Μελετούμε τώρα το άθροισμα =Ι1 Ι2 =κυκλική συνέλιξη της Ι1 και Ι2 Το είναι ένα άθροισμα βάρους των συντελεστών της εικόνας Ι1, όπου οι παράμετροι Ι2(i-m, j-n) είναι μετατοπισμένα στοιχεία της εικόνας Ι2.

379 379 Κυκλική Συνέλιξη (2/2)  Το μέγεθος της μετατόπισης εξαρτάτε από (i, j).  Για δεδομένα (i, j), η J(i, j) που αποτελεί την νέα εικόνα, ορίζεται ως:  τοποθέτηση της I2 πάνω στην I1  αντιστροφή της I2 : [I2(-m, -n)]  μετατόπιση της I2 με μέγεθος (i, j)  υπολογισμός I1(m, n) · I2[(i-m) N, (j-n) N ] for 0 ≤ m, n ≤ N-1 προσθέτουμε τα αποτελέσματα. Τα σχήματα που δίδονται πιο κάτω είναι απαραίτητα για να κατανοήσουμε πλήρως τις έννοιες αυτές.

380 380 Διαγράμματα Της Κυκλικής Συνέλιξης (1/6)  Όλες οι ακόλουθες διεργασίες είναι για να υπολογίσουμε την κυκλική συνέλιξη σε ένα απλό σημείο (i, j).  Θεωρούμαι τις δυο εικόνες Ι1 και Ι2 με την εικόνα I1 και το σκιασμένο περιεχόμενο σε κάθε φάση της επεξεργασίας που φαίνεται:

381 381 Διαγράμματα Της Κυκλικής Συνέλιξης (2/6)  Τους δίνουμε το ίδιο σύστημα συντεταγμένων (δηλ. τοποθετούμε την μια πάνω στην άλλη).  Και το αποτέλεσμα που παίρνουμε είναι:

382 382 Διαγράμματα Της Κυκλικής Συνέλιξης (3/6)  Η εικόνα Ι2 αντιστρέφεται(ανακλάτε), κατά μήκος και των δύο αξόνων.  Έτσι είναι ορισμένη και για αρνητικές συντεταγμένες, π.χ χρησιμοποιείτε η περιοδική επέκταση.

383 383 Διαγράμματα Της Κυκλικής Συνέλιξης (4/6)  Η αντιστραμμένη ερμηνεία της Ι2 τότε μετατοπίζεται με το μέγεθος (i, j) κατά μήκος των δυο αξόνων:

384 384 Διαγράμματα Της Κυκλικής Συνέλιξης (5/6)  Το άθροισμα προεκτείνεται πάνω στο 0<=m,n<=Ν-1 έτσι μερικοί από τους συντελεστές της Ι2(i-m, j-n) πέφτουν έξω από το διάστημα 0,...,Ν-1.  Αυτό που υπολογίζεται είναι το άθροισμα του α)γινομένου της: [ Ι1(m,n) ; 0 <= m,n <= N-1 ] β)της περιοδικής επέκτασης [ Ι2(i-m, j-n) ]

385 385 Διαγράμματα Της Κυκλικής Συνέλιξης (6/6)  Όπως φαίνεται:

386 386 Υπολογισμός Της Κυκλικής Συνέλιξης (1/3)  Ευθύς Υπολογισμός:  Είναι κάπως απλός αλλά χρονοβόρος.

387 387 Υπολογισμός Της Κυκλικής Συνέλιξης (2/3)  Ψευδοκώδικας: int I1 [N ] [N], I2 [N ] [N], J[N][N]; while (0 ≤ i, j ≤ N-1) { J (i, j) = 0; while (0 ≤ m, n ≤ N-1) J (i, j) = J (i, j) + I1(m, n) * I2[(i-m) mod N, (j-n) mod N]; } Matlab: J = conv2(I1, I2);

388 388 Υπολογισμός της Κυκλικής Συνέλιξης (3/3)  Ο αλγόριθμος είναι απλά ένα σύνολο με do-loops το ένα μέσα στο άλλο.  Αν το Ν είναι μεγάλο(ας πούμε 512 * 512) τότε: -Για κάθε N 2 συντεταγμένες: N 2 αθροίσματα και N 2 πολλαπλασιασμοί. -΄Η N 4 αθροίσματα και N 4 πολλαπλασιασμοί σύνολο. -Για N = 512, αυτό κάνει 236 = 6.9 x 1010 λειτουργίες.

389 389 Υπολογισμός με DFT της Κυκλικής Συνέλιξης  Λόγο του FFT, ο υπολογισμός της κυκλικής συνέλιξης στον χώρο του DFT είναι πολύ πιο γρήγορος, νοούμενου ότι Ν =δυνάμεις του 2.  Απλά: Όπου δείχνει ένα Ν*Ν σημείων αλγόριθμο FFT. Matlab: J = real (ifft2(fft2(I1).* fft2(I2))); real(.), παρόλον ότι το φανταστικό μέρος είναι μικρό.

390 390 Υπολογισμός με DFT της Κυκλικής Συνέλιξης  Ο υπολογισμός του FFT μιας Ν*Ν εικόνας είναι της τάξεως του όπως επίσης και ο υπολογισμός της κυκλικής συνέλιξης.  Μετά από όλη αυτή την δουλειά θα ανακαλύψουμε τώρα ότι η κυκλική συνέλιξη πρέπει να τροποποιηθεί για να γίνει χρήσιμη.

391 391 Γραμμική Συνέλιξης (1/7)  Η κυκλική συνέλιξη είναι συναίτια του περιοδικού DFT  Για συνεχείς εικόνες και, κάνουμε πολλαπλασιασμό των CFTs (π.χ., με οπτικά μέσα)  Έχει ως αποτέλεσμα την χρήσιμη γραμμική συνέλιξη:

392 392 Γραμμική Συνέλιξης (2/7)  Η γραμμική συνέλιξη είναι φαινόμενο της φύσης. Η κυκλική συνέλιξη είναι τεχνητό αποτέλεσμα της ψηφιακής επεξεργασίας.  Πολλή ύλη από την θεωρία κυκλωμάτων, την οπτική, και την θεωρία συνεχών φίλτρων είναι βασισμένες πάνω στην γραμμική συνέλιξη.  Συνεπάγεται ότι, (γραμμική) η θεωρία των ψηφιακών κυκλωμάτων επίσης χρειάζονται την αντίληψη της ψηφιακής γραμμικής συνέλιξης.  Ευτυχώς, η κυκλική συνέλιξη μπορεί να χρησιμοποιηθεί για τον υπολογισμό της γραμμικής συνέλιξης.

393 393 Γραμμική Συνέλιξης (3/7)  Παράδειγμα( γιατί η κυκλική συνέλιξη είναι μη επιθυμητή):  Ένα από τους απλούστερους τύπους γραμμικών συνελίξεων είναι η λειτουργία τοπικού μέσου όρου (η φίλτρο μέσου όρου).  Πιο κατανοητά, κάθε στίγμα εικόνας αντικαθίσταται από τον μέσο όρο των γειτόνων του μέσα σε ένα τετράγωνο ‘ παράθυρο ’.  Άρα:

394 394 Γραμμική Συνέλιξης (4/7)

395 395 Γραμμική Συνέλιξης (5/7)  Αυτό μπορεί να εκφραστεί, στα πιο πολλά σημεία (χωρίς να το αποδείξουμε εδώ) σαν την κυκλική συνέλιξη της εικόνα με μια άλλη εικόνα του τετράγωνου με φωτεινότητα 1/M, όπου M = # στιγμάτων στο τετράγωνο:

396 396 Γραμμική Συνέλιξης (6/7)  Κοντά στα άκρα της εικόνας, ωστόσο, έχουμε κυκλικές παρεμβολές:  Συνήθως είναι επιθυμητό να παίρνουμε μέσους όρους γειτονικών στοιχείων...

397 397 Γραμμική Συνέλιξης (7/7)  … και γενικά, ο σκοπός της συνέλιξης είναι για να θέσουν υπεράνω και να ζυγίσουν τις εικόνες σύμφωνα με τη σωστή σειρά τους στον χώρο, αντί την περιοδική σειρά που είναι αποτέλεσμα του DFT  Το αποτέλεσμα είναι ακόμα χειρότερο αν και οι δυο εικόνες δεν είναι μηδενικές κοντά στις άκρες τους.  Αν το φίλτρο είναι μεγάλο, το κυκλικό λάθος είναι γενικά απαράδεκτο  Αν το φίλτρο είναι μικρό, το κυκλικό αποτέλεσμα μπορούμε να το δεχτούμε αν αναγνωριστεί κοντά στις άκρες τις εικόνας. Αλλά χρησιμοποιώντας μικρά φίλτρα μπορεί να γίνει και χωρίς DFTs (αργότερα)

398 398 Γραμμική Συνέλιξη Με Προσθήκη Μηδενικών (1/4)  Η εκτέλεση της γραμμικής συνέλιξης από κυκλική συνέλιξη είναι γενικώς απλό θέμα  Επιτυγχάνεται με την προσθήκη στους δυο πίνακες εικόνων με μηδενικές τιμές  Γενικά, και οι δυο πίνακες εικόνας πρέπει να διπλασιαστούν στο μέγεθος:

399 399 Γραμμική Συνέλιξη Με Προσθήκη Μηδενικών (2/4)  Στις άκρες της εικόνας, δεν θα σημειωθεί κυκλικό φαινόμενο, αφού η ‘ κινητή ’ εικόνα θα ζυγιστούν με μηδενικές τιμές μόνο έξω από το πεδίο ορισμού  Αυτό μπορεί να το δούμε παρατηρώντας τις επικαλύψεις όταν υπολογίζουμε την συνέλιξη στα σημεία (i, j):

400 400 Γραμμική Συνέλιξη Με Προσθήκη Μηδενικών (3/4) Στις άκρες της εικόνας, δεν θα σημειωθεί κυκλικό φαινόμενο, αφού η ‘ κινητή ’ εικόνα θα ζυγιστεί με μηδενικές τιμές μόνο έξω από το πεδίο ορισμού. Θα το δούμε στο παράδειγμα παρατηρώντας τις επικαλύψεις όταν υπολογίζουμε την συνέλιξη στα σημεία (i, j). Στο παράδειγμα που θα δούμε τα αθροίσματα υπάρχουν μόνο μέσα στο μπλε σκιασμένο τετράγωνο. Αντί να αθροίζουμε στην περιοδική επέκταση της ‘ κινητής εικόνας ’, οι μηδενικές τιμές προσθέτονται στις ζυγισμένες εσωτερικές τιμές

401 401 Γραμμική Συνέλιξη Με Προσθήκη Μηδενικών (4/4) Γραμμική συνέλιξη με προσθήκη μηδενικών Παράδειγμα

402 402 Υπολογισμός DFT της Γραμμικής Συνέλιξης Ας θεωρήσουμε ότι I1´, I2´, και J´ είναι εκδοχές εικόνων με προσθήκη μηδενικών 2N x 2N δυο εικόνων οι οποίες θα εφαρμοστεί η γραμμική συνέλιξη (I1 και I2). Τότε αν J´ = I 1 ´ I 2 ´ = IFFT 2N [FFT 2N [I 1 ´] FFT 2N [I 2 ´]] όπου FFT2N δείχνει ένα (2N x 2N)-σημείο του αλγόριθμου FFT, τότε η N x N εικόνα με στοιχεία J(i, j) = J´ (i, j) ; d+0 ≤ i, j ≤ d+ N-1 όπου (d, d) είναι το ‘κέντρο’ του φίλτρου θα περιλαμβάνει το αποτελεσμα γραμμικής συνέλιξης. Με άλλες λέξεις: J = I 1 * I 2

403 403 Σημειώσεις  Στην πραγματικότητα, το αποτέλεσμα της γραμμικής συνέλιξης είναι μεγαλύτερο από N x N, αλλά το σημαντικό μέρος του αποτελέσματος περιέχεται στην J  Μερικές φορές είναι επιθυμητό να συνελέξουμε μια εικόνα με ένα μικρότερο template φίλτρου (ας πούμε MxM), όπου M < N. Αυτό επιτυγχάνεται εύκολα με την προσθήκη μηδενική στο υποστήριγμα με μηδενικά μεγέθους NxN.  Στην πράξη, αν M << N, ίσως είναι γρηγορότερο να εκτελέσουμε την γραμμική συνέλιξη στο πεδίο χώρου

404 404 Ευθείς Υπολογισμός της Γραμμικής Συνέλιξης Ο ευθείς υπολογισμός της γραμμικής συνέλιξης είναι απλός με χωρίς περισσότερο υπολογισμό από της κυκλικής συνέλιξης (αλλά ακόμα συνήθως πολύ περισσότερος από της προσέγγιση FFT). Αν αντί να θεωρήσουμε ότι I 1 και I 2 είναι περιοδικά επεκτεινόμενα (όχι απαραίτητος όταν δεν χρησιμοποιούμε το DFT), μπορούμε να υποθέσουμε ότι I1(i, j) = I2(i, j) = 0 οποιουδήποτε i N-1 ή j > N-1. Σε αυτή την περίπτωση η εξίσωση : Δίνει: J = I 1 * I 2

405 405 Ψευδό-Κώδικας για Γραμμική Συνέλιξη { intI1 [N ] [N], I2 [N ] [N]; do { J(i, j) = 0; do { if (0 ≤ i-m ≤ N-1 and 0 ≤ j-n ≤ N-1) { J(i, j) = J(i, j) + I1(m, n) * I2(i-m, j-n); } } while (0 ≤ m, n ≤ N-1); } while (0 ≤ i, j ≤ N-1); } Εδώ η υποθετική εντολή (if) εμποδίζει την λειτουργία αθροίσματος από το να συμβεί έξω από την εικόνα.

406 406 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΓΡΑΜΜΙΚΟ ΦΙΛΤΡΑΡΙΣΜΑ ΕΙΚΟΝΩΝ Μια επεξεργασία η οποία δέχεται ένα σήμα ή εικόνα Ι σαν είσοδο και την μετασχηματίζει με μια πράξη της γραμμικής συνέλιξης, είναι ένας τύπος γραμμικού συστήματος ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας

407 407 Παραδείγματα  MTF = modulation transfer function:  IR = impulse response:  Αυτό που μας ενδιαφέρει:

408 408 Στόχος του Φιλτραρίσματος Εικόνων Επεξεργαζόμαστε, δειγματολημμένες, κβαντισμένες εικόνες για να μετασχηματίσουμε σε:  εικόνες καλύτερης ποιότητας (με κάποια κριτήρια)  εικόνες με ορισμένα χαρακτηριστικά υπερτιμημένα  εικόνες με ορισμένα χαρακτηριστικά με μειωμένη έμφαση

409 409 Στόχος  Εξομάλυνση – αφαίρεση θορύβου από λάθη στα bits, μετάδοση, κλπ.  Αφαίρεση θαμπότητας – μεγαλώνει την όξυνση θαμπωμένων εικόνων  Όξυνση – δίνει έμφαση σε σημαντικά χαρακτηριστικά, όπως ακμές  Συνδυασμός αυτών

410 410 Χαρακτηρισμός Γραμμικών Φίλτρων (1/3) Κάθε γραμμικό ψηφιακό φίλτρο εικόνας μπορεί να χαρακτηριστεί με ένα από τους δυο ισοδύναμους τρόπους: * Από την ανταπόκριση (απόκριση) του φίλτρου στον χώρο (impulse response) * Από την ανταπόκριση (απόκριση) Fourier του φίλτρου (Fourier response)

411 411 Χαρακτηρισμός Γραμμικών Φίλτρων (2/3) Η ανταπόκριση του φίλτρου στο χώρο και η ανταπόκριση στο πεδίο Fourier είναι ένα DFT ζεύγος: = DFT[ H ] H = IDFT[ ] · Η ανταπόκριση στο πεδίο Fourier επεξηγεί ακριβώς πως το σύστημα επηρεάζει κάθε συχνότητα της εικόνας η οποία περνάτε διαμέσου του συστήματος · Επειδή: Μια συχνότητα εικόνας στο (u, v) = (u0, v0) ενισχύεται ή ελαττώνεται με μέγεθος και μετατοπίζεται από το μέγεθος

412 412 Παράδειγμα (1/3) Τώρα θεωρούμε ότι η είσοδος στο σύστημα είναι ημιτονική εικόνα με συχνότητα (b, c):

413 413 Παράδειγμα (2/3) Τότε η έξοδος είναι:

414 414 Παράδειγμα (3/3)

415 415 Χαρακτηρισμός Γραμμικών Φίλτρων (3/3)  Η κρουστική απόκριση είναι ακριβώς αυτό – η απόκρισης του συστήματος στην κρουστική απόκριση  Η κρουστική απόκριση είναι ένας αποτελεσματικός τρόπος για να σχεδιάσουμε την απόκριση του συστήματος σε μια εικόνα αφού κάθε εικόνα είναι ένα ζυγισμένο άθροισμα από παλμούς.

416 416 Παράδειγμα Υποθέτουμε ότι η είσοδος σε ένα γραμμικό σύστημα Η είναι μια κρουστική απόκριση, που έχει αποτέλεσμα μια εικόνα εξόδου με στοιχεία: Τότε

417 417 Σχεδιασμός Φίλτρων με Βάση το DFT (1/2) Συχνά ένα φίλτρο θα σχεδιαστεί σύμφωνα με τους προσδιορισμούς του πεδίου συχνοτήτων. Αυτό μπορεί να δημιουργηθεί, π.χ. από ένα μοντέλο από γραμμική παραμόρφωση που συνέβη στο συνεχές πεδίο το οποίο θα διορθωθεί ψηφιακός. Δοθέντος ενός εναλλασσόμενου προσδιορισμού ή προσδιορισμού- χώρου μπορούμε να ορίσουμε την κατά προσέγγιση δειγματοληψία ή ψηφιακή ερμηνεία σαν:

418 418 Σχεδιασμός Φίλτρων με Βάση το DFT (2/2) Το φίλτρο παίρνει τιμές στο διάστημα 0 ≤ |u|, |v| ≤ N/2 - 1, αφού το CFT είναι κεντραρισμένο και μη-περιοδικό · Όταν το φίλτρο σχεδιαστεί η κρουστική απόκριση μπορεί να παρθεί από:

419 419 Κατωδιαβατά, Ζωνοδιαβατά, και Ανωδιαβατά Φίλτρα Οι όροι κατωδιαβατό, ζωνοδιαβατό, και ανωδιαβατό είναι μόνο ατελής ποιοτική επεξηγήσει της απόκρισης συχνότητας του συστήματος  ‘ Κατωδιαβατό – μειώνει όλες εκτός από τις ‘ χαμηλές ’ συχνότητες  ‘ Ζωνοδιαβατό – μειώνει όλες εκτός από ένα ενδιάμεσο διάστημα ή ‘ μέση ’ συχνότητα  ‘ Ανωδιαβατό – μειώνει όλες εκτός από τις ‘ υψηλές ’ συχνότητες Έχουμε ήδη δει παραδείγματα από αυτές: το μηδέν-ένα αποτέλεσμα μάσκας εικόνας

420 420 Γενικές Χρήσεις των Διάφορων Τύπων Φίλτρων  Τα Κατωδιαβατά φίλτρα χρησιμοποιούνται τυπικά για - εξομάλυνση θορύβου - Θόλωμα λεπτομερειών εικόνας για έμφαση  Τα Ανωδιαβατά φίλτρα χρησιμοποιούνται τυπικά για - υπερτίμηση λεπτομερειών της εικόνας και αντιθέσεις - αφαίρεση θαμπώματος εικόνας  Τα Ζωνοδιαβατά φίλτρα είναι συνήθως για ειδικές χρήσεις

421 421 Κατωδιαβατό Φίλτρο (1/2) Το gaussian φίλτρο με απόκριση συχνότητας Παράδειγμα

422 422 Κατωδιάβατο Φίλτρο (2/2) Πέφτει γρήγορα χαμηλά για μεγαλύτερες συχνότητες: N = 32, s = 1 N = 32, s = 1.5 Σχεδιαγράμματα για μια γραμμή τού πίνακα (ν = 0) Το gaussian είναι ένα σημαντικό κατωδιαβατο φίλτρο 2-Δ Gaussians και τα DFTs τους φαίνονται στο κεφαλαίο 4

423 423 Ζωνοδιαβατό Φίλτρο  Επιτυγχάνεται με τη διαφορά δύο κατωδιαβατών όμοιων φίλτρων εκτός από τον συντελεστή συχνότητας  Γραφική παράσταση της διαφοράς-των- gaussians (DOG) από προηγούμενο παράδειγμα: όπου Ν = 32 και Κ = 1.5

424 424 Ανωδιαβατό Φίλτρο  Το κατά προσέγγιση DFT του μετασχηματισμού Fourier του συνεχούς Laplacian: Γραφική Παράσταση (Α = 4.5 και Ν = 32)

425 425 Γραμμική βελτίωση της ποιότητας εικόνας  Εισαγωγή  Μοντέλο Αθροιστικού Λευκού Θορύβου  Φάσμα του Λευκού Θορύβου  Ψηφιακός Λευκός Θόρυβος  Εξομάλυνση Θορύβου – Φίλτρο Μέσου Όρου  Εξομάλυνση Θορύβου – Ιδανικό Κατωδιαβατό Φίλτρο  Εξομάλυνση Θορύβου – Φίλτρο Gaussian  Εφαρμογή Φίλτρων με χρήση Matlab ΕΠΛ 445 – Ψηφιακή Επεξεργασία Εικόνας

426 426 Εισαγωγή  Η βελτίωση της ποιότητας εικόνας σημαίνει μια επεξεργασία όπου η οπτική ποιότητα της εικόνας καλυτερεύει.  Μελετήσαμε κάποιες λειτουργίες απλού στίγματος και γεωμετρικές λειτουργίες οι οποίες μπορούν να χρησιμοποιηθούν σαν ‘ βελτίωση ’.  Η γραμμική βελτίωση της ποιότητας εικόνας ειδικά, σημαίνει μια επεξεργασία εξομάλυνσης ανωμαλιών ή θορύβου που έχουν διαφθείρει κάπως την εικόνα, χωρίς να καταστρέφει την πληροφορία της.  Ο θόρυβος συνήθως σχεδιάζεται σαν αθροιστικός θόρυβος ή σαν θόρυβος πολλαπλασιασμού.  Ο θόρυβος πολλαπλασιασμού χειρίζεται καλύτερα από μια μη-γραμμική τεχνική φιλτραρίσματος γνωστή ως ομοιομορφικό φιλτράρισμα.

427 427 Μοντέλο Αθροιστικού Λευκού Θορύβου (1/2)  Σχεδιάζεται σαν αθροιστική εικόνα Ν της οποίας οι τιμές είναι υψηλά χαοτικές ή απροσδιόριστες.  Μπορεί να συμβεί σαν θερμικός θόρυβος στο κύκλωμα, θόρυβος μετάδοσης όταν η εικόνα σταλεί μέσα από κάποιο κανάλι, κλπ.  Μπορεί να συμβεί πριν την δειγματοληψία της εικόνας, π.χ., η συνεχής εικόνα J C (x, y) που λαμβάνεται είναι της μορφής: όπου N C ( x, y) είναι λευκός θόρυβος

428 428 Μοντέλο Αθροιστικού Λευκού Θορύβου (2/2)  Θεωρείται να έχει μηδενικό-μεσαίο: αν πάρουμε το μέσο όρο από Μ οποιαδήποτε δείγματα N C (x i, y i ) ; i = 1,..., M: τότε το mean M [N C ]  0 όταν M  ∞. Κατά μέσο όρο, ο θόρυβος πέφτει γύρο από την τιμή μηδέν (ακριβώς μιλώντας, ο θόρυβος είναι επίσης ‘mean-ergodic’).

429 429 Φάσμα Του Λευκού Θορύβου (1/3)  Το ενεργειακό φάσμα του N C (x, y) είναι ο μετασχηματισμός Fourier:  Tο τετραγωνικό μέγεθος του μέσου όρου (πάνω σε Μ εικόνες θορύβου) είναι σταθερή για όλες τις συχνότητες (επίπεδο φάσμα, έτσι λευκό): Fourier transform of N C (x, y)  Κατά μέσο όρο, ο λευκός θόρυβος περιλαμβάνει όλες τις συχνότητες σε ίσα μεγέθη (επίπεδο φάσμα, έτσι λευκό)  η = ισχύς του θορύβου mean M [| C (ω x, ω y )| 2 ]  η ως M  ∞ για κάθε (ω x, ω y ).

430 430 Φάσμα Του Λευκού Θορύβου (2/3)  Ο λευκός θόρυβος είναι ένα κατά προσέγγιση μοντέλο της κατάστασης όπου το φάσμα της εικόνας C (ω x, ω y ) προσθέτεται στο σήμα φαρδιού φάσματος θορύβου:

431 431 Φάσμα Του Λευκού Θορύβου (3/3)  Σκοπός της γραμμικής βελτίωσης ποιότητας της εικόνας είναι η αφαίρεση όσο το δυνατό περισσότερο, των υψηλών συχνοτήτων του φάσματος θορύβου και παράλληλα να διατηρήσει όσο το δυνατό περισσότερο το φάσμα της εικόνας. Αυτό επιτυγχάνεται από ένα κατωδιάβατο φίλτρο με κάποιο ευρύ φάσμα (αφού οι εικόνες έχουν οι ίδιες ευρύ φάσμα).

432 432 Ψηφιακός Λευκός Θόρυβος  Μοντέλο ψηφιακού αθροιστικού θορύβου: J = I + N όπου Ν είναι μια εικόνα με ψηφιακό γραμμικό θόρυβο.  Κατά μέσο όρο τα στοιχεία του Ν θα είναι μηδέν.  Το DFT της εικόνας θορύβου θα είναι ένα άθροισμα του DFT της αρχικής εικόνας και το DFT της εικόνας θορύβου:  Κατά μέσο όρο το DFT θορύβου θα περιλαμβάνει ένα ευρύ φάσμα από συχνότητες. =+

433 433 Εξομάλυνση Θορύβου – Φίλτρο Μέσου Όρου (1/3)  Αν αντικαταστήσουμε κάθε στίγμα στην εικόνα που περιέχει θόρυβο, με το μέσο όρο των τοπικών γειτόνων μέσα σε ένα M x M παράθυρο τότε η εικόνα θα εξομαλυνθεί:  Ο μέσος όρος στοιχείων θα περιορίσει το μεσαίο θόρυβο προς το μηδέν.  Το φίλτρο μέσου όρου τετράγωνου είναι ένα γραμμικό ψηφιακό φίλτρο με κρουστική απόκριση: 3 Χ 3 όπου Μ << Ν

434 434 Εξομάλυνση Θορύβου – Φίλτρο Μέσου Όρου (2/3)  Η φιλτραρισμένη (γραμμικά συνελιγμένη) εικόνα K = H*J = H*I + H*N θα έχει την εικόνα και το φάσμα θορύβου επηρεασμένα με τον ίδιο τρόπο.  Παίρνοντας τον μέσο όρο περισσότερων στοιχείων (μεγαλύτερο Μ) δημιουργεί στενότερο φάσμα. = =+

435 435 Εξομάλυνση Θορύβου – Φίλτρο Μέσου Όρου (3/3)  Το μέγεθος του φίλτρου μέσου όρου συνήθως παίρνεται σα μια ενδιάμεση τιμή για να ισοσταθμίσει τη διάφορα μεταξύ της εξομάλυνσης θορύβου και εξομάλυνσης εικόνας.  Τυπικά μεγέθη φίλτρων μέσου όρου είναι M x M = 3 x 3, 5 x 5,..., 15 x 15 (πολύ εξομάλυνση) για μια 512 x 512 εικόνα. Παράδειγμα φίλτρου μέσου όρου στο Matlab I = imread(‘examleim.tif’); J = imnoise(I, ‘gaussian’, 0.02); K = filter2(fspecial(‘average’,3),J)/255; imshow(J); figure, imshow(K); Άσκηση: Δείξτε ότι: (0,0) = 1

436 436 Εξομάλυνση Θορύβου – Ιδανικό Κατωδιαβατό Φίλτρο  Είναι επίσης πιθανόν να χρησιμοποιούμε ένα φίλτρο μηδενός-ενός ή ένα ιδανικό κατωδιάβατο φίλτρο με σχεδίαση στο πεδίο του DFT:  Χρήσιμο αν είναι πιθανό με κάποιο τρόπο να υπολογίσουμε την πιο μεγάλη σημαντική ακτινωτή συχνότητα. = 1 για = 0 διαφορετικά (u,v)

437 437 Εξομάλυνση Θορύβου – Φίλτρο Gaussian  Αποτελεί ένα αποτελεσματικό φίλτρο εξομάλυνσης:  Πλεονέκτημα ότι δίνει περισσότερο βάρος στους κοντινότερους γείτονες.  Ο σχεδιασμός του DFT συνήθως περιλαμβάνει τοποθέτηση του εύρους πλάτους μέσης-κορυφής στο U cutoff με την επιλογή του σ (στις περισσότερες περιπτώσεις ο χρήστης θα πειραματιστεί με διαφορετικές τιμές του σ), π.χ: Θέτουμεκαι λύνουμε για το σ: (u,v) =

438 438 Γραμμική Αποκατάσταση Εικόνας (1...28)  Συχνά μια εικόνα η οποία πάρθηκε ψηφιακά έχει ήδη διευρυνθεί από κάποια γραμμική επεξεργασία.  Αυτό μπορεί να γίνει λόγο του θαμπώματος από κίνηση, ή θάμπωμα λόγο της μη-εστίασης της κάμερας.  Μπορούμε να σχεδιάσουμε μια τέτοια παρατηρημένη εικόνα σαν το αποτέλεσμα γραμμικά συνέλιξης: J C (x, y) = G C (x, y)*I C (x, y) όπου το G C (x, y) είναι μια γραμμική παραμόρφωση

439 439 Γραμμική Αποκατάσταση Εικόνας  Επίσης, J̃̃ C (w x, w y ) = G̃ C (w x, w y ).Ĩ C (w x, w y )  Η εικόνα δειγματοληψίας τότε θα είναι της μορφής (θεωρώντας τη συχνότητα δειγματοληψίας ικανοποιητικά ψηλή – Θεώρημα δειγματοληψίας) J=G*I με DFT J̃̃ = G̃ Ĩ (με άπειρα στίγματα έτσι που να μπορούμε να προσεγγίσουμε την γραμμική συνέλιξη με κυκλική).  Το παραμορφωμένο G είναι επίσης πάντα κατωδιάβατο (θάμπωμα).

440 440 Γραμμική Αποκατάσταση Εικόνας Φίλτρο Αντιστροφής  Συχνά είναι πιθανό να κάνουμε ένα υπολογισμό της παραμόρφωσης G.  Αυτό μπορεί να είναι πιθανό μελετώντας της φυσική της κατάστασης.  Το θάμπωμα από κίνηση (κίνηση της κάμερας) είναι συνήθως κατά μήκος μιας διάστασης ή κατεύθυνσης. Αν αυτή η κατεύθυνση μπορεί να υπολογιστεί, τότε ένα προσεγγιστικό φίλτρο μπορεί να σχεδιαστεί.

441 441 Γραμμική Αποκατάσταση Εικόνας  Αντιστρέφοντας την διαδικασία της γραμμικής παραμόρφωσης G λέγετε Deconvolution. Γίνεται χρησιμοποιώντας το φίλτρο αντίστροφης G inverse της παραμόρφωσης.  Στο πεδίο του DFT, το φίλτρο αντίστροφης ορίζεται από G inverse (u,v)=1/ G̃(u,v) ; 0 ≤ u, v ≤ N-1 Δεδομένου ότι G̃(u, v) ≠ 0 για 0 ≤ u, v ≤ N-1

442 442 Γραμμική Αποκατάσταση Εικόνας  Τότε έχουμε για το DFT της φιλτραρισμένης (αποκατεστημένης) εικόνας: Κ̃ = G inverse G̃ Ĩ = Ĩ  Ο σκοπός μας είναι να χρησιμοποιήσουμε ψηφιακούς τρόπους για το θάμπωμα της εικόνας. Όπως θα δούμε, αυτό θα είναι κάπως δύσκολο.  Μερικές φορές είναι απίθανο, η μπορεί να γίνει μόνο με οπτική διόρθωση.  Συνήθως παίρνεται μόνο ένας υπολογισμός της θαμπότητας G.

443 443 Γραμμική Αποκατάσταση Εικόνας  Η αντιστροφή της κατωδιάβατης παραμόρφωσης είναι πάντα ανωδιάβατο. u u Gaussian distortion Inverse filter

444 444 Γραμμική Αποκατάσταση Εικόνας  Σημείωση: το φίλτρο αντιστροφής παίρνει τιμή 1.0 στο (u, v) = (0, 0).  Στις υψηλές συχνότητες ο σχεδιαστής πρέπει να είναι προσεκτικός.

445 445 Γραμμική Αποκατάσταση Εικόνας Ελλιπής Συχνότητες  Δυστυχώς, τα πράγματα δεν είναι πάντα τόσο ‘ ιδανικά ’ στην πραγματικότητα. Μερικές φορές η απόκριση συχνότητας της παραμόρφωσης παίρνει τιμή μηδέν σε μερικές συχνότητες.  Θεωρούμαι ότι για κάποια (u 0, v 0 ) ισχύει ότι G(u 0, v 0 ) = 0. Ο σύνηθες ορισμός για το φίλτρο αντιστροφής θα δώσει G inverse (u 0, v 0 ) = ∞ που δεν έχει οποιαδήποτε σημασία.

446 446 Γραμμική Αποκατάσταση Εικόνας  Στην πραγματικότητα κάθε συχνότητα η οποία μηδενίζεται από μια γραμμική παραμόρφωση είναι αναντικατάστατες στην πράξη – χάνονται για πάντα!  Το καλύτερο που μπορεί να γίνει είναι να αντιστρέψουμε την παραμόρφωση στις μη- μηδενικές τιμές.

447 447 Γραμμική Αποκατάσταση Εικόνας (10...28)  Μερικές φορές αυτό μπορεί να είναι πάνω σε πολλά επίπεδα συχνοτήτων. Μερικά οπτικά συστήματα αφαιρούν ένα μεγάλο γωνιακό κομμάτι συχνοτήτων:

448 448 Γραμμική Αποκατάσταση Εικόνας  Φίλτρο Ψευδό-Αντιστροφής  Το φίλτρο ψευδό-αντίστροφης G̃ p-inverse ορίζεται G̃ p-inverse (u, v) = 1 / G̃(u, v) ; if G̃(u, v) ≠ 0 = 0 ; if G̃(u, v) = 0 for 0 ≤ u, v ≤ N-1. Έτσι, καμία προσπάθεια δεν γίνεται για επανάκτηση μηδενικών συχνοτήτων.

449 449 Γραμμική Αποκατάσταση Εικόνας  Η συντηρητική προσέγγιση είναι να μηδενίσουμε το φίλτρο ψευδό-αντίστροφης στο γνωστό κομμάτι ελλιπών συχνοτήτων.  Με αυτό τον τρόπο κάθε νοθές (θορυβώδεις) συχνότητες θα εκλείπονταν.

450 450 Γραμμική Αποκατάσταση Εικόνας Deconvolution στην παρουσία θορύβου  Η χειρότερη περίπτωση συμβαίνει όταν η εικόνα παραμορφώνεται και από γραμμικές παραμορφώσεις G και περιλαμβάνει επίσης αθροιστικό θόρυβο.  Αυτό μπορεί να συμβεί όταν, για παράδειγμα, μια εικόνα η οποία είναι γραμμικά παραμορφωμένη (G) και τότε στέλνεται μέσα από ένα θορυβώδες κανάλι.

451 451 Γραμμική Αποκατάσταση Εικόνας  Το γενικό μοντέλο είναι: J = G*I + N όπου G είναι η γραμμική παραμόρφωση και Ν είναι η εικόνα ψηφιακού λευκού θορύβου.  Το DFT της παραμορφωμένης εικόνας θα είναι ένα άθροισμα του DFT της γραμμικής παραμόρφωσης της αρχικής εικόνας και του DFT της εικόνας θορύβου J̃̃ = G̃ Ĩ + Ν̃̃

452 452 Γραμμική Αποκατάσταση Εικόνας  Το φιλτράρισμα με το γραμμικό φίλτρο Η θα πετάξει το αποτέλεσμα K = H*J = H*G*I + H*N ή K̃̃ = H̃̃ J̃̃ = H̃̃ G̃ Ĩ + H̃̃ Ν̃̃  Το πρόβλημα είναι ότι ούτε το κατωδιάβατο φίλτρο (για να εξομαλύνει το θόρυβο, αλλά να μην διόρθωση το θάμπωμα), ούτε το ανωδιάβατο φίλτρο (π.χ., το φίλτρο αντίστροφης, το οποίο θα ενίσχυση το θόρυβο) θα δουλεύει.