Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Maths in English An experiment at school… ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΒΑΡΒΑΚΕΙΟ Υ ΣΧΟΛΗΣ Σχ. Έτος 2011-2012.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Maths in English An experiment at school… ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΒΑΡΒΑΚΕΙΟ Υ ΣΧΟΛΗΣ Σχ. Έτος 2011-2012."— Μεταγράφημα παρουσίασης:

1 Maths in English An experiment at school… ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΒΑΡΒΑΚΕΙΟ Υ ΣΧΟΛΗΣ Σχ. Έτος 2011-2012

2  Μέσα στην τάξη του Β2 μία ομάδα μαθητών/τριών αποφασίσαμε να κάνουμε ένα πείραμα με τίτλο «Μαθηματικά στα Αγγλικά». Επιλέξαμε το κεφάλαιο των Μαθηματικών «Πολυώνυμα», το οποίο διδασκόμαστε εκείνο το διάστημα, το μεταφράσαμε στα Αγγλικά και το παρουσιάσαμε στην τάξη στα Αγγλικά. Βοηθούς στο πείραμά μας είχαμε τον καθηγητή των Μαθηματικών Δρ Γ. Κόσσυβα και την καθηγήτρια των Αγγλικών Δρ Λ. Νιτσοπούλου. Βοηθητικό υλικό είχαμε ένα βιβλίο Μαθηματικών στα Αγγλικά, που διδάσκεται σε Αμερικανικά κολλέγια μέσης εκπαίδευσης και ένα γλωσσάρι μαθηματικών όρων που έφτιαξε η καθηγήτρια κ. Νιτσοπούλου. Στη συνέχεια, μαζί με ομάδα μαθητών/τριών από το Β4 προχωρήσαμε σε σύγκριση των δύο σχολικών βιβλίων (Ελληνικό και Αμερικανικό) και παραθέσαμε τα αποτελέσματα της σύγκρισης. ΤΟ ΠΕΙΡΑΜΑ ΜΑΣ

3 ΣΚΟΠΟΙ  Η ανάπτυξη και η ενθάρρυνση της ομαδοσυνεργατικής προσέγγιση της μαθησιακής διδασκαλίας.  Η μελέτη της διαθεματικότητας (Μαθηματικά- Αγγλικά ).  Η βιωματική μάθηση με την λύση ασκήσεων στα αγγλικά.  Η ενθάρρυνση της δημιουργικότητας των μαθητών στην ψηφιακή τεχνολογία.  Μια π ρώτη προσέγγιση της ερευνητικής εργασίας(project) στο πλαίσιο του αναλυτικού προγράμματος.  Η διερευνητική προσέγγιση της μάθησης.  Η διαπολιτισμική σκέψη και προσέγγιση των μαθητών/τριών με την σύγκριση Αμερικανικού- Ελληνικού σχολικού βιβλίου Μαθηματικών.

4 ΣΤΟΧΟΙ  Η ανάπτυξη της διαμεσολαβητικής ικανότητας των μαθητών /τριών  Η διαπολιτισμική προσέγγιση του μαθήματος μέσα από τη σύγκριση Ελληνικού – Αμερικανικού βιβλίου μαθηματικών.

5 USABILITY OF POLYNOMIALS

6 Polynomials are also used to model the trajectory of a cannonball

7 TAYLOR SERIES  In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point.  The concept of a Taylor series was formally introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is centered at zero, then that series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.  It is common practice to approximate a function by using a finite number of terms of its Taylor series. Taylor's theorem gives quantitative estimates on the error in this approximation. Any finite number of initial terms of the Taylor series of a function is called a Taylor polynomial. The Taylor series of a function is the limit of that function's Taylor polynomials, provided that the limit exists. A function may not be equal to its Taylor series, even if its Taylor series converges at every point. A function that is equal to its Taylor series in an open interval (or a disc in the complex plane) is known as an analytic function.

8 Degrees of Polynomials (Polynomial of degree 1)

9 DEFINITIONS

10 EQUATION BETWEEN 2 POLYNOMIALS

11 NUMERICAL VALUE OF A POLYNOMIAL In order to find the value of the polynomial, we replace the X with a certain real number r The expression that forms is called numerical value of the polynomial for X=r

12 ARITHMETICAL PRICE OF THE POLYNOMIAL

13 In order to find X(x) and U(x) we follow a certain procedure  1.Make the shape of the division and write the 2 polynomials  2.Find the first term of the quotient by finding the first term of the dividend with the first term X of the division  3. Multiply with x-3 and subtract the product from the dividend. So we find the first partial difference  4.Repeat 2 and 3 with a new dividend we find the second partial difference -4x-1

14 Adding polynomials Subtracting polynomials Multiplying •Simply combine like terms •Same as adding just change same signs •Use the distributive property

15 William George Horner  William George Horner (1786 – 22 September 1837) was a British mathematician and schoolmaster. The invention of the zoetrope, in 1834 and under a different name (Daedaleum), has been attributed to him.

16 Horner’s Work  Horner published a mode of solving numerical equations of any degree, now known as Horner's method. According to Augustus De Morgan, he first made it known in a paper read before the Royal Society, 1st July 1819, by Davies Gilbert, headed A New Method of Solving Numerical Equations of all Orders by Continuous Approximation, and published in the Philosophical Transactions for the same year. But this version of the history is comprehensively denied by later historians. De Morgan's advocacy of Horner's priority in discovery led to "Horner's method" being so called in textbooks, but this is a misnomer. Not only did the 1819 paper not contain that method, but it also appeared in an 1820 paper by Theodore Holdred, being published by Horner only in 1830; and the method was by no means novel, having appeared in the work of the Chinese mathematician Zhu Shijie centuries before, and also in the work of Paolo Ruffini.[4]  The method was republished by Horner in the Ladies' Diary for 1838, and a simpler and more extended version appeared in vol. i. of the Mathematician, 1843

17 CONSTRUCTION OF HORNER’S TABLE

18 THE HORNER CONFIGURATION

19 Abilities  The degree of the product of the 2 non-zero polynomials is equal to the total of the degrees of the Z polynomials.  For every pair of polynomial D(x) and δ(x) with δ(x) 0 there are 2unique polynomials X(x) and U(x),so as:  D(x)=δ(x)X(x)+U(x)  Where U(x) is either the zero polynomial or is of less degree than the δ(x)

20 Just like the division of natural numbers D(x) •Is called dividend δ(x) •Is called divisor X(x) •Is called quotient

21 COMPARISON AND CONTRAST BETWEEN THE AMERICAN AND THE GREEK MATHS BOOK Differences The English book includes more thorough examples thus making it much easier for the student to understand. It includes more exercises and a wider variety of them. It also shows the goals and reasons for learning polynomials and their practical application in real life.

22 More differences… It contains useful tips for study and technology. It combines both algebra and geometry, revealing all polynomial’s aspects. It is easier on the eyes since it contains images that make it more attractive. It is more interesting making mathematics more approachable towards the students.

23 Similarities between the American and the Greek Maths book  They have the same terminology.  The difficulty of the exercises is gradually increasing.  They both provide students with the answers of the exercises.  They also contain examples that show how to solve the exercises step by step.

24 Bibliography :, Άλγεβρα β’ λυκείου, Larson’s algebra for college students, www.wikipedia.org Foundations, Cambridge University Press, 1991 Edit&presentation Supervisor:Κωνσταντίνος Ζήκος Project made by:Βασίλης Zωγόπουλος,Νεοκλής Κασιμ ἀ της, Γεωργία Θεοδωρακοπούλου,Γιάννης Έξαρχος, του Β2 τμήματος του Προτύπου Πειραματικού ΓΕΛ της Βαρβακείου Σχολής Many thanks to Our teachers Dr Λίλιαν Νιτσοπούλου και Dr Γεώργιο Κόσσυβα who helped us in this project


Κατέβασμα ppt "Maths in English An experiment at school… ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΒΑΡΒΑΚΕΙΟ Υ ΣΧΟΛΗΣ Σχ. Έτος 2011-2012."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google