Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ."— Μεταγράφημα παρουσίασης:

1 ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

2 Από τις Καταστατικές Εξισώσεις στη Συνάρτηση Μεταφοράς Καταστατικές Εξισώσεις Μετασχηματισμοί Laplace Καταστατικών Εξισώσεων Συνάρτηση Μεταφοράς

3 Μετασχηματισμοί Διανύσματος Κατάστασης Ισοδύναμα Συστήματα Έστω ένα σύστημα {Α, b, c, d} με Συνάρτηση Μεταφοράς Aν P ένας αντιστρέψιμος Πίνακας, ποιά είναι η Συνάρτηση Μεταφοράς του συστήματος {A s, b s, c s, d s };

4 Από τη Συνάρτηση Μεταφοράς στη Κρουστική Απόκριση Συνάρτηση Μεταφοράς Κρουστική Απόκριση

5 Δυναμοσειρές Τετραγωνικών Πινάκων Από το Εκθετικό Σήμα στο Εκθετικό Σήμα Πίνακα

6 Μετασχηματισμός Laplace Πίνακα και επομένως η Κρουστική Απόκριση θα δίνεται από τη Σχέση: ΑΡΑ:

7 Μετασχηματισμοί Laplace Καταστατικών Εξισώσεων Αποκρίσεις Μηδενικής Κατάστασης & Μηδενικής Εισόδου Καταστατικές Εξισώσεις Μονόπλευροι Μετασχηματισμοί Laplace Καταστατικών Εξισώσεων Απόκριση Μηδενικής Εισόδου Απόκριση Μηδενικής Κατάστασης

8 Χώρος Κατάστασης - Πίνακας Μετάβασης •Ας υποθέσουμε την Ομογενή καταστατική εξίσωση με αρχικό καταστατικό διάνυσμα s(0). Μπορούμε εύκολα να δείξουμε ότι το διάνυσμα κατάστασης x(t) μπορεί να γραφεί ως όπου ο Πίνακας Καταστατικής Μετάβασης.

9 Χώρος Κατάστασης-Πίνακας Μετάβασης •Ιδιότητες Πίνακα Καταστατικής Μετάβασης. Χρονική αμεταβλητότητα

10 Χώρος Κατάστασης -Εξίσωση Καταστατικής Μετάβασης Λύση Δυναμικών Εξισώσεων Εξίσωση Κατάστασης: Εξίσωση Εξόδου: •Αν μας δίνονται οι δυναμικές εξισώσεις: πως μπορούμε να εκφράσουμε τις λύσεις τους με την βοήθεια του Πίνακα Μετάβασης;

11 Χώρος Κατάστασης-Εξίσωση Καταστατικής Μετάβασης Λύση Δυναμικών Εξισώσεων •Λύσεις δυναμικών εξισώσεων με αρχική συνθήκη στο t ο =0

12 Χώρος Κατάστασης-Εξίσωση Καταστατικής Μετάβασης Λύση Δυναμικών Εξισώσεων •Λύσεις δυναμικών εξισώσεων με αρχική συνθήκη στο t ο

13 ΦΕΦΕ-Ασυμπτωτική-ΦΕΦΚ Ευστάθεια Εξίσωση Κατάστασης Ομογενής Εξίσωση Κατάστασης Θα λέμε ότι το δυναμικό σύστημα είναι ασυμπτωτικά ευσταθές αν και μόνο αν ή ισοδύναμα αν και μόνο αν

14 Παρατηρησιμότητα- Ελεγξιμότητα Υποθέσεις: •Ας υποθέσουμε ότι μας δίνεται η τριάδα {Α, b, c} που περιγράφει το σύστημα στο χώρο κατάστασης. •Ας υποθέσουμε επίσης ότι γνωρίζουμε την είσοδο x(t) και μπορούμε να μετράμε την έξοδο y(t). Ερώτημα 1. Μπορώ να υπολογίσω το διάνυσμα κατάστασης s(t);

15 Παρατηρησιμότητα- Ελεγξιμότητα Υποθέσεις: •Ας υποθέσουμε ότι μας δίνεται η τριάδα {Α, b, c} που περιγράφει το σύστημα στο χώρο κατάστασης. •Ας υποθέσουμε επίσης ότι γνωρίζουμε την αρχική κατάσταση s(0). Ερώτημα 2. Μπορώ να βρω ένα σήμα το οποίο αν το εφαρμόσω στην είσοδο του συστήματος να οδηγήσω σε πεπερασμένο χρόνο το σύστημα στην κα- τάσταση s(t);

16 Δεδομένων της Εξίσωσης Κατάστασης και της Εξίσωσης Εξόδου θα λέμε ότι η κατάσταση του δυναμικού συστήματος είναι παρατηρή- σιμη τη χρονική στιγμή t 0 αν υπάρχει πεπερασμένο t 1 > t 0 τέτοιο ώστε αν γνωρίζουμε την είσοδο x(t) και την αντίστοιχη έξοδο στο t 0, να μπορούμε να υπολογίζουμε την κατάσταση s(t 0 ). Αν αυτό ισχύει για κάθε t 0 θα λέμε ότι το αντίστοιχο σύστημα είναι παρατηρήσιμο. Πίνακας Παρατηρησιμότητας Παρατηρησιμότητα- Ελεγξιμότητα

17 Δεδομένης της Εξίσωσης Κατάστασης θα λέμε ότι η κατάσταση του δυναμικού συστήματος είναι ελέγξιμη τη χρονική στιγμή t 0 αν υπάρχει πεπερασμένο t 1 > t 0 τέτοιο ώστε για κάθε s(t 0 ) υπάρχει είσοδος x(t) [t 0 t 1 ], που μπορεί να οδηγήσει την s(t 0 ) σε οποιαδήποτε επιθυμητή κατάσταση s(t 1 ). Αν αυτό ισχύει για κάθε t 0 θα λέμε ότι το αντίστοιχο σύστημα είναι ελέγξιμο. Πίνακας Ελεγξιμότητας Παρατηρησιμότητα- Ελεγξιμότητα

18 To test των Popov-Belevitch-Hautus (PBH) 1.To ζευγάρι {Α, c} δεν είναι παρατηρήσιμο όταν και μόνο όταν: 2. To ζευγάρι {Α,b} δεν είναι ελέγξιμο όταν και μόνο όταν: Παρατηρησιμότητα- Ελεγξιμότητα To κλασσικό test της ορίζουσας των μητρώων

19 Η2(s)Η2(s)Η1(s)Η1(s) x(t)x(t)y(t)y(t) Παρατηρησιμότητα- Ελεγξιμότητα

20 Η1(s)Η1(s)Η2(s)Η2(s) x(t)x(t)y(t)y(t)


Κατέβασμα ppt "ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google